Novel Regulation of the Synthesis of α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid (AMPA) Receptor Subunit GluA1 by Carnitine Palmitoyltransferase 1C (CPT1C) in the Hippocampus.

J Biol Chem

From the Basic Sciences Department, Facultat de Medicina i Ciències de la Salut, Universitat Internacional de Catalunya, Sant Cugat del Vallès 08195, Spain, the Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), 15706 Santiago de Compostela, Spain

Published: October 2015

The regulation of AMPA-type receptor (AMPAR) abundance in the postsynaptic membrane is an important mechanism involved in learning and memory formation. Recent data suggest that one of the constituents of the AMPAR complex is carnitine palmitoyltransferase 1C (CPT1C), a brain-specific isoform located in the endoplasmic reticulum of neurons. Previous results had demonstrated that CPT1C deficiency disrupted spine maturation in hippocampal neurons and impaired spatial learning, but the role of CPT1C in AMPAR physiology had remained mostly unknown. In the present study, we show that CPT1C binds GluA1 and GluA2 and that the three proteins have the same expression profile during neuronal maturation. Moreover, in hippocampal neurons of CPT1C KO mice, AMPAR-mediated miniature excitatory postsynaptic currents and synaptic levels of AMPAR subunits GluA1 and GluA2 are significantly reduced. We show that AMPAR expression is dependent on CPT1C levels because total protein levels of GluA1 and GluA2 are decreased in CPT1C KO neurons and are increased in CPT1C-overexpressing neurons, whereas other synaptic proteins remain unaltered. Notably, mRNA levels of AMPARs remained unchanged in those cultures, indicating that CPT1C is post-transcriptionally involved. We demonstrate that CPT1C is directly involved in the de novo synthesis of GluA1 and not in protein degradation. Moreover, in CPT1C KO cultured neurons, GluA1 synthesis after chemical long term depression was clearly diminished, and brain-derived neurotrophic factor treatment was unable to phosphorylate the mammalian target of rapamycin (mTOR) and stimulate GluA1 protein synthesis. These data newly identify CPT1C as a regulator of AMPAR translation efficiency and therefore also synaptic function in the hippocampus.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4646200PMC
http://dx.doi.org/10.1074/jbc.M115.681064DOI Listing

Publication Analysis

Top Keywords

cpt1c
12
glua1 glua2
12
carnitine palmitoyltransferase
8
palmitoyltransferase cpt1c
8
maturation hippocampal
8
hippocampal neurons
8
glua1 protein
8
glua1
7
ampar
6
neurons
6

Similar Publications

Expanding molecular and clinical spectrum of CPT1C-associated hereditary spastic paraplegia (SPG73)-a case series.

Ann Clin Transl Neurol

December 2024

Department of Neurology, Movement Disorders Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.

Autosomal-dominant variants in the CPT1C gene have been associated with hereditary spastic paraplegia type 73 (SPG73), which typically presents with slowly progressive lower limb weakness and spasticity and is therefore considered a pure form of hereditary spastic paraplegia. However, we report two unrelated males with novel CPT1C variants (NM_001199753.2: patient 1: c.

View Article and Find Full Text PDF

This study aimed to explore the lipid-lowering effect and the mechanism of action of the milk fat globule membrane (MFGM) in obese mice. All findings indicated that MFGM supplementation impeded weight gain in mice with obesity. qPCR and western blot analysis further revealed that MFGM could reduce lipid deposition and improve lipid metabolism by downregulating the expression levels of Fas, Scd1, PPARγ, and Srebp-1c and increasing the expression levels of Mcad, Cpt-1c, and PPAR-α.

View Article and Find Full Text PDF

Impact of aerobic exercise on brain metabolism: Insights from spatial metabolomic analysis.

Behav Brain Res

February 2025

Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, China. Electronic address:

Background: Exercise is acknowledged for its beneficial effects on brain health; however, the intricate underlying molecular mechanisms remain poorly understood.

Aims: This study aimed to explore aerobic exercise-induced metabolic alterations in the brain.

Methods: We conducted an eight-week treadmill running exercise program in two-month-old male C57/BL6J mice.

View Article and Find Full Text PDF

Numerous variables that regulate the metabolism of Sertoli cells and sperm have been identified, one of which is sex steroid hormones. These hormones play a vital role in maintaining energy homeostasis, influencing the overall metabolic balance of the human body. The proper functioning of the reproductive system is closely linked to energy status, as the reproductive axis responds to metabolic signals.

View Article and Find Full Text PDF

Exploration of Genes Related to Intramuscular Fat Deposition in Xinjiang Brown Cattle.

Genes (Basel)

August 2024

Xinjiang Key Laboratory of Meat and Milk Production Herbivore Nutrition, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.

The aim of this study was to investigate the differentially expressed genes associated with intramuscular fat deposition in the longissimus dorsi muscle of Xinjiang Brown Bulls. The longissimus dorsi muscles of 10 Xinjiang Brown Bulls were selected under the same feeding conditions. The intramuscular fat content of muscle samples was determined by the Soxhlet extraction method, for which 5 samples with high intramuscular fat content (HIMF group) and 5 samples with low intramuscular fat content (LIMF group) were selected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!