We studied the molecular evolution of the capsid gene in all genotypes (genotypes 1-9) of human norovirus (NoV) genogroup I. The evolutionary time scale and rate were estimated by the Bayesian Markov chain Monte Carlo (MCMC) method. We also performed selective pressure analysis and B-cell linear epitope prediction in the deduced NoV GI capsid protein. Furthermore, we analysed the effective population size of the virus using Bayesian skyline plot (BSP) analysis. A phylogenetic tree by MCMC showed that NoV GI diverged from the common ancestor of NoV GII, GIII, and GIV approximately 2,800 years ago with rapid evolution (about 10(-3) substitutions/site/year). Some positive selection sites and over 400 negative selection sites were estimated in the deduced capsid protein. Many epitopes were estimated in the deduced virus capsid proteins. An epitope of GI.1 may be associated with histo-blood group antigen binding sites (Ser377, Pro378, and Ser380). Moreover, BSP suggested that the adaptation of NoV GI strains to humans was affected by natural selection. The results suggested that NoV GI strains evolved rapidly and date back to many years ago. Additionally, the virus may have undergone locally affected natural selection in the host resulting in its adaptation to humans.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4559769 | PMC |
http://dx.doi.org/10.1038/srep13806 | DOI Listing |
Inorg Chem
January 2025
School of Materials Science and Engineering, China University of Petroleum, Qingdao 266580, PR China.
Mismatched electron and proton transport rates impede the manifestation of effective performance of the electrocatalytic oxygen evolution reaction (OER), thereby limiting its industrial applications. Inspired by the natural protein cluster in PS-II, different organic-inorganic hybrid electrocatalysts were synthesized via a hydrothermal method. -Toluidine (PT), benzoic acid (BA), and -aminobenzoic acid (PABA) were successfully intercalated into NiFe-LDH.
View Article and Find Full Text PDFFront Plant Sci
December 2024
National Institute of Molecular Biology and Biotechnology, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
Transfer RNAs (tRNAs) are noncoding RNAs involved in protein biosynthesis and have noncanonical roles in cellular metabolism, such as RNA silencing and the generation of transposable elements. Extensive tRNA gene duplications, modifications to mature tRNAs, and complex secondary and tertiary structures impede tRNA sequencing. As such, a comparative genomic analysis of complete tRNA sets is an alternative to understanding the evolutionary processes that gave rise to the extant tRNA sets.
View Article and Find Full Text PDFEXCLI J
November 2024
Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Center, 15 Garbary Street, 61-866 Poznan, Poland.
Cutaneous melanoma is the deadliest form of skin cancer. Despite advancements in treatment, many patients still face poor outcomes. A deeper understanding of the mechanisms involved in melanoma pathogenesis is crucial for improving diagnosis and therapy.
View Article and Find Full Text PDFStructural changes involving new neurons can occur through stem cell-driven neurogenesis and late-maturing immature neurons, namely undifferentiated neuronal precursors frozen in a state of arrested maturation. The latter exist in the cerebral cortex, being particularly abundant in large-brained mammals. Similar cells have been described in the amygdala of some species, although their interspecies variation remain poorly understood.
View Article and Find Full Text PDFThe growing body of experimental and computational studies suggested that the cross-neutralization antibody activity against Omicron variants may be driven by balance and tradeoff of multiple energetic factors and interaction contributions of the evolving escape hotspots involved in antigenic drift and convergent evolution. However, the dynamic and energetic details quantifying the balance and contribution of these factors, particularly the balancing nature of specific interactions formed by antibodies with the epitope residues remain scarcely characterized. In this study, we performed molecular dynamics simulations, ensemble-based deep mutational scanning of SARS-CoV-2 spike residues and binding free energy computations for two distinct groups of broadly neutralizing antibodies : E1 group (BD55-3152, BD55-3546 and BD5-5840) and F3 group (BD55-3372, BD55-4637 and BD55-5514).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!