A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI. | LitMetric

Observation of cardiogenic flow oscillations in healthy subjects with hyperpolarized 3He MRI.

J Appl Physiol (1985)

Academic Unit of Radiology, University of Sheffield, Royal Hallamshire Hospital, Sheffield, United Kingdom

Published: November 2015

Recently, dynamic MRI of hyperpolarized (3)He during inhalation revealed an alternation of the image intensity between left and right lungs with a cardiac origin (Sun Y, Butler JP, Ferrigno M, Albert MS, Loring SH. Respir Physiol Neurobiol 185: 468-471, 2013). This effect is investigated further using dynamic and phase-contrast flow MRI with inhaled (3)He during slow inhalations (flow rate ∼100 ml/s) to elucidate airflow dynamics in the main lobes in six healthy subjects. The ventilation MR signal and gas inflow in the left lower lobe (LLL) of the lungs were found to oscillate clearly at the cardiac frequency in all subjects, whereas the MR signals in the other parts of the lungs had a similar oscillatory behavior but were smaller in magnitude and in anti-phase to the signal in the left lower lung. The airflow in the main bronchi showed periodic oscillations at the frequency of the cardiac cycle. In four of the subjects, backflows were observed for a short period of time of the cardiac cycle, demonstrating a pendelluft effect at the carina bifurcation between the left and right lungs. Additional (1)H structural MR images of the lung volume and synchronized ECG recording revealed that maximum inspiratory flow rates in the LLL of the lungs occurred during systole when the corresponding left lung volume increased, whereas the opposite effect was observed during diastole, with gas flow redirected to the other parts of the lung. In conclusion, cardiogenic flow oscillations have a significant effect on regional gas flow and distribution within the lungs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4628994PMC
http://dx.doi.org/10.1152/japplphysiol.01068.2014DOI Listing

Publication Analysis

Top Keywords

cardiogenic flow
8
flow oscillations
8
healthy subjects
8
hyperpolarized 3he
8
left lungs
8
left lower
8
lll lungs
8
cardiac cycle
8
lung volume
8
gas flow
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!