A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Azobenzene-Bridged Porphyrin Nanorings: Syntheses, Structures, and Photophysical Properties. | LitMetric

Azobenzene-Bridged Porphyrin Nanorings: Syntheses, Structures, and Photophysical Properties.

Chemistry

Key Laboratory of Chemical Biology and Traditional Chinese, Medicine Research (Ministry of Education of China), Key Laboratory of Phytochemical R&D of Hunan Province, Key Laboratory of Application and Assembly of Organic, Functional Molecules, Hunan Normal University, Changsha 410081 (P.R. China).

Published: October 2015

Azobenzene-bridged β-to-β and meso-to-meso porphyrin nanorings were successfully synthesized by a palladium-catalyzed Suzuki-Miyaura coupling reaction in a logical synthesis. The dimeric structure was confirmed by XRD analysis. The azo linkages in di- and tetramers are in the all-trans conformation, whereas in the trimers one azo linkage can be interconverted between cis and trans under external stimulation. When trimeric isomers are heated to 333 K or higher, the azo linkages will be in the all-trans configurations: the pure all-trans trimer can be kept in the dark for several months. Fluorescence anisotropy and pump-power-dependent decay results revealed excitation energy transfer for azobenzene-bridged zinc-porphyrin nanorings. The distances between porphyrin units of these azobenzene-bridged porphyrin arrays are almost the same, but the exciton energy hopping (EEH) times for each wheel are markedly different. The dimer and meso-to-meso tetramer possess relatively short excitation energy transfer (EET) times (1.28 and 2.48 ps, respectively) due to their good planarity and rigidity. In contrast, the EET time for the trimeric zinc(II)-porphyrin array (6.9 ps) is relatively long due to its nonradiative decay pathway (i.e., cis/trans isomerization of azobenzene). Both di- and tetramers exhibit relatively high fluorescence quantum yields, whereas the trimers show weak emission because of structural differences.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201502296DOI Listing

Publication Analysis

Top Keywords

azobenzene-bridged porphyrin
8
porphyrin nanorings
8
azo linkages
8
di- tetramers
8
excitation energy
8
energy transfer
8
azobenzene-bridged
4
nanorings syntheses
4
syntheses structures
4
structures photophysical
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!