Purpose: Multiple imaging techniques are nowadays available for clinical in-vivo visualization of tumour biology. FDG PET/CT identifies increased tumour metabolism, hypoxia PET visualizes tumour oxygenation and dynamic contrast-enhanced (DCE) CT characterizes vasculature and morphology. We explored the relationships among these biological features in patients with non-small-cell lung cancer (NSCLC) at both the patient level and the tumour subvolume level.

Methods: A group of 14 NSCLC patients from two ongoing clinical trials (NCT01024829 and NCT01210378) were scanned using FDG PET/CT, HX4 PET/CT and DCE CT prior to chemoradiotherapy. Standardized uptake values (SUV) in the primary tumour were calculated for the FDG and hypoxia HX4 PET/CT scans. For hypoxia imaging, the hypoxic volume, fraction and tumour-to-blood ratio (TBR) were also defined. Blood flow and blood volume were obtained from DCE CT imaging. A tumour subvolume analysis was used to quantify the spatial overlap between subvolumes.

Results: At the patient level, negative correlations were observed between blood flow and the hypoxia parameters (TBR >1.2): hypoxic volume (-0.65, p = 0.014), hypoxic fraction (-0.60, p = 0.025) and TBR (-0.56, p = 0.042). At the tumour subvolume level, hypoxic and metabolically active subvolumes showed an overlap of 53 ± 36 %. Overlap between hypoxic sub-volumes and those with high blood flow and blood volume was smaller: 15 ± 17 % and 28 ± 28 %, respectively. Half of the patients showed a spatial mismatch (overlap <5 %) between increased blood flow and hypoxia.

Conclusion: The biological imaging features defined in NSCLC tumours showed large interpatient and intratumour variability. There was overlap between hypoxic and metabolically active subvolumes in the majority of tumours, there was spatial mismatch between regions with high blood flow and those with increased hypoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4700090PMC
http://dx.doi.org/10.1007/s00259-015-3169-4DOI Listing

Publication Analysis

Top Keywords

tumour subvolume
12
blood flow
12
tumour
9
non-small-cell lung
8
lung cancer
8
fdg pet/ct
8
patient level
8
hx4 pet/ct
8
hypoxic volume
8
flow blood
8

Similar Publications

Background: Magnetic resonance imaging (MRI) cerebral blood volume (CBV) measurements improve the diagnosis of recurrent gliomas. The study investigated the prognostic value of dynamic contrast-enhanced (DCE) CBV imaging in treated IDH wildtype glioblastoma when added to MRI or amino acid positron emission tomography (PET).

Methods: Hybrid [F]FET PET/MRI with 2CXM (2-compartment exchange model) DCE from 86 adult patients with suspected recurrent or residual glioblastoma were retrospectively analyzed.

View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer often spreads to bones, and stereotactic ablative body radiation therapy (SABR) shows promise for treating this type of disease with limited metastases.
  • An analysis of 14 patients who received SABR found that 15 out of 17 bone metastases had a significant reduction in [F]NaF uptake (SUV), indicating treatment effectiveness, with a median decrease of 42%.
  • Meanwhile, non-tumour bone also experienced a reduction in SUV, ranging from 15% to 34%, depending on the radiation dose received.
View Article and Find Full Text PDF

Background And Purpose: Tumours in the liver often develop on a background of liver cirrhosis and impaired liver function. As a result, radiotherapy treatments are limited by radiation-induced liver disease, parameterised by the liver mean dose (LMD). Liver function is highly heterogeneous, especially in liver cancer, but the use of LMD does not take this into account.

View Article and Find Full Text PDF

Background And Purpose: Intravoxel-incoherent-motion (IVIM) magnetic-resonance-imaging (MRI) and positron-emission-tomography (PET) have been investigated independently but not voxel-wise to evaluate tumor microenvironment in cervical carcinoma patients. Whether regionally combined information of IVIM and PET offers additional predictive benefit over each modality independently has not been explored. Here, we investigated parametric-response-mapping (PRM) of co-registered PET and IVIM in cervical cancer patients to identify sub-volumes that may predict tumor shrinkage to concurrent-chemoradiation-therapy (CCRT).

View Article and Find Full Text PDF

Purpose: For women with locoregionally advanced cervical cancer, the standard of care treatment is the curatively intended chemoradiation therapy (CRT). A relationship between bone marrow (BM) dose-volume histograms (DVHs) and acute hematological toxicity (HT) has been debated recently. Aim of this study was the evaluation of BM dose constraints and HT in a contemporary patient cohort.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!