AI Article Synopsis

  • Conducted a study on how water molecules diffuse in the lipid bilayer of DMPC membranes using neutron scattering techniques.
  • Found that membrane hydration water exhibits both anomalous (sub-diffusive) and anisotropic diffusion patterns on a nanoscale.
  • Used simulations to explore the reasons behind these unique movement behaviors, linking them to the constraints of the membrane environment and inherent water dynamics.

Article Abstract

We have studied nanoscale diffusion of membrane hydration water in fluid-phase lipid bilayers made of 1,2-dimyristoyl-3-phosphocholine (DMPC) using incoherent quasi-elastic neutron scattering. Dynamics were fit directly in the energy domain using the Fourier transform of a stretched exponential. By using large, 2-dimensional detectors, lateral motions of water molecules and motions perpendicular to the membranes could be studied simultaneously, resulting in 2-dimensional maps of relaxation time, τ, and stretching exponent, β. We present experimental evidence for anomalous (sub-diffusive) and anisotropic diffusion of membrane hydration water molecules over nanometer distances. By combining molecular dynamics and Brownian dynamics simulations, the potential microscopic origins for the anomaly and anisotropy of hydration water were investigated. Bulk water was found to show intrinsic sub-diffusive motion at time scales of several picoseconds, likely related to caging effects. In membrane hydration water, however, the anisotropy of confinement and local dynamical environments leads to an anisotropy of relaxation times and stretched exponents, indicative of anomalous dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5sm01713kDOI Listing

Publication Analysis

Top Keywords

hydration water
20
water molecules
12
membrane hydration
12
nanoscale diffusion
8
membranes studied
8
diffusion membrane
8
water
7
hydration
5
anomalous anisotropic
4
anisotropic nanoscale
4

Similar Publications

This study introduces a novel landfill cover material, employing lake sediment as a substrate, stabilised with fly ash, slag, desulfurisation gypsum and construction waste. The mechanical properties, including shear strength parameters, unconfined compressive strength, hydraulic conductivity, volumetric shrinkage, and water content, of the solidified sludge were evaluated. The microscopic mechanism of the solidified sludge were investigated through XRD, FTIR, and SEM-EDS techniques.

View Article and Find Full Text PDF

Hydration Effects Driving Network Remodeling in Hydrogels during Cyclic Loading.

ACS Macro Lett

January 2025

Materials Science and Engineering Department, Technion-Israel Institute of Technology, Haifa 3200003, Israel.

In complex networks and fluids such as the extracellular matrix, the mechanical properties are substantially affected by the movement of polymers both part of and entrapped in the network. As many cells are sensitive to the mechanical remodeling of their surroundings, it is important to appreciate how entrapped polymers may inhibit or facilitate remodeling in the network. Here, we explore a molecular-level understanding of network remodeling in a complex hydrogel environment through successive compressive loading and the role that noninteracting polymers may play in a dynamic network.

View Article and Find Full Text PDF

Water storage capacity and capacitance in trees regulate hydration levels, providing water reserves during drought. However, the effects of varying traits, tissue fractions and of different water pools on the allometry of branch-/sample-level properties have not been systematically investigated. We analyse the relationships between branch size and branch capacity and capacitance with respect to wood density, xylem vulnerability to embolism, and tissue fractions.

View Article and Find Full Text PDF

Many important processes in cells depend on the transfer of protons through water wires embedded in transmembrane proteins. Herein, we have performed more than 55 μs all-atom simulations of the light-harvesting complex of a diatom, i.e.

View Article and Find Full Text PDF

The sluggish kinetics of the hydrogen evolution reaction (HER) result in a high overpotential in alkaline solutions. A high-curvature metal oxide heterostructure can effectively boost the electrocatalytic HER by leveraging the tip-enhanced local electric field effect. Herein, NiP/NiMoO nanocones were synthesised on a nickel foam (NF) substrate by etching a metal-organic framework template.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!