Macrophages play an important role in the establishment of infection by intracellular pathogens. Mycobacterium tuberculosis is known to inhibit apoptosis and to downregulate immune responses of host cells using various strategies, including activation of peroxisome proliferator-activated receptor (PPAR)γ. Mannose-capped lipoarabinomannan (ManLAM) is one of the known bacterial effectors that plays a role in subversion of host immunity and activation of PPARγ. Here, we have used an unbiased global gene expression profiling approach to understand (a) how ManLAM regulates host cell immune responses and (b) the role of PPARγ in modulating ManLAM-induced host cell signaling. We have demonstrated that ManLAM-dependent inhibition of macrophage apoptosis is mediated by the upregulation of the antiapoptotic B-cell CLL/lymphoma 2 (Bcl2) family member A1. Our in silico analyses suggested that ManLAM-mediated PPARγ signaling is linked to important functions such as phagocytosis, cytoskeleton remodeling, cell survival, and autophagy. We have validated that ManLAM upregulates signal transducer and activator of transcription (STAT5)α, an important transcriptional regulator of cell survival in a PPARγ-dependent manner.

Download full-text PDF

Source
http://dx.doi.org/10.1002/iub.1430DOI Listing

Publication Analysis

Top Keywords

gene expression
8
expression profiling
8
mycobacterium tuberculosis
8
family member
8
immune responses
8
host cell
8
cell survival
8
profiling mycobacterium
4
tuberculosis lipoarabinomannan-treated
4
lipoarabinomannan-treated macrophages
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!