A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel bone suppression method that improves lung nodule detection : Suppressing dedicated bone shadows in radiographs while preserving the remaining signal. | LitMetric

AI Article Synopsis

  • * Method: The technique sequentially suppresses bone shadows from the lung field without affecting the intercostal space; it separates and smooths the image gradients to isolate bone shadows for better visualization.
  • * Results: This method improved detection rates for lung nodules in a study with radiologists, raising diagnostic accuracy (AUC) significantly, while maintaining clarity even with complex objects like pacemakers present in the images.

Article Abstract

Purpose: Suppressing thoracic bone shadows in chest radiographs has been previously reported to improve the detection rates for solid lung nodules, however at the cost of increased false detection rates. These bone suppression methods are based on an artificial neural network that was trained using dual-energy subtraction images in order to mimic their appearance.

Method: Here, a novel approach is followed where all bone shadows crossing the lung field are suppressed sequentially leaving the intercostal space unaffected. Given a contour delineating a bone, its image region is spatially transferred to separate normal image gradient components from tangential component. Smoothing the normal partial gradient along the contour results in a reconstruction of the image representing the bone shadow only, because all other overlaid signals tend to cancel out each other in this representation.

Results: The method works even with highly contrasted overlaid objects such as a pacemaker. The approach was validated in a reader study with two experienced chest radiologists, and these images helped improving both the sensitivity and the specificity of the readers for the detection and localization of solid lung nodules. The AUC improved significantly from 0.596 to 0.655 on a basis of 146 images from patients and normals with a total of 123 confirmed lung nodules.

Conclusion: Subtracting all reconstructed bone shadows from the original image results in a soft image where lung nodules are no longer obscured by bone shadows. Both the sensitivity and the specificity of experienced radiologists increased.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11548-015-1278-yDOI Listing

Publication Analysis

Top Keywords

bone shadows
20
lung nodules
12
bone suppression
8
bone
8
detection rates
8
solid lung
8
sensitivity specificity
8
lung
6
shadows
5
image
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!