Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: Suppressing thoracic bone shadows in chest radiographs has been previously reported to improve the detection rates for solid lung nodules, however at the cost of increased false detection rates. These bone suppression methods are based on an artificial neural network that was trained using dual-energy subtraction images in order to mimic their appearance.
Method: Here, a novel approach is followed where all bone shadows crossing the lung field are suppressed sequentially leaving the intercostal space unaffected. Given a contour delineating a bone, its image region is spatially transferred to separate normal image gradient components from tangential component. Smoothing the normal partial gradient along the contour results in a reconstruction of the image representing the bone shadow only, because all other overlaid signals tend to cancel out each other in this representation.
Results: The method works even with highly contrasted overlaid objects such as a pacemaker. The approach was validated in a reader study with two experienced chest radiologists, and these images helped improving both the sensitivity and the specificity of the readers for the detection and localization of solid lung nodules. The AUC improved significantly from 0.596 to 0.655 on a basis of 146 images from patients and normals with a total of 123 confirmed lung nodules.
Conclusion: Subtracting all reconstructed bone shadows from the original image results in a soft image where lung nodules are no longer obscured by bone shadows. Both the sensitivity and the specificity of experienced radiologists increased.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11548-015-1278-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!