Phase Transformations of Copper Sulfide Nanocrystals: Towards Highly Efficient Quantum-Dot-Sensitized Solar Cells.

Chemphyschem

School of Materials Science & Engineering, Beijing Institute of Technology, 5 Zhongguancun South Street, Haidian District, Beijing, 100081, China.

Published: March 2016

Owing to their high electrical conductivity, tunable plasmonic absorption spectra, low cost, and abundance in nature, Cu2-x S nanocrystals are of great interest as functional materials for photovoltaic and photothermal applications. With the aim of developing low-cost high-efficiency quantum-dot-sensitized solar cells, solution-processed Cu2-x S nanocrystal films are synthesized and their phase transformations upon thermal treatment are investigated. A combination of experimental results and theoretical analysis illustrates the thermodynamic evolution of the crystal structures and the composition caused by the thermal-annealing process. The use of Cu2-x S nanocrystal films as counter electrodes in quantum-dot-sensitized solar cells is also explored. The devices have an optimized power-conversion efficiency of 5.81 % for tetragonal Cu2 S nanocrystal films that are derived from annealed Cu1.8 S nanocrystal films.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.201500627DOI Listing

Publication Analysis

Top Keywords

nanocrystal films
16
quantum-dot-sensitized solar
12
solar cells
12
phase transformations
8
cu2-x nanocrystal
8
transformations copper
4
copper sulfide
4
sulfide nanocrystals
4
nanocrystals highly
4
highly efficient
4

Similar Publications

Multifunctional nanocellulose hybrid films: From packaging to photovoltaics.

Int J Biol Macromol

December 2024

Physical Chemistry and Soft Matter, Wageningen University and Research, 6708 WE Wageningen, Netherlands. Electronic address:

This study aimed to develop eco-friendly multifunctional nanocellulose (NC) hybrid films with tailored properties for versatile applications including packaging and photovoltaics. Hybrid films composed by cellulose nanocrystals (CNC) and carboxymethylated cellulose nanofibrils (CNF) were produced at various mass ratio (CNC - 100:0 to 0:100). Montmorillonite clay (MTM) was incorporated (50 % by mass) into the CNC:CNF films.

View Article and Find Full Text PDF

Poly(butyl cyanoacrylate) (PBCA) nanoparticles have numerous applications, including drug and gene delivery, molecular imaging, and cancer therapy. To uncover the molecular mechanisms underlying their interactions with cell membranes, we utilized a Langmuir monolayer as a model membrane system. This approach enabled us to investigate the processes of penetration and reorganization of PBCA nanoparticles when deposited in a phospholipid monolayer subphase.

View Article and Find Full Text PDF

Studies on Morphological Evolution of Gravure-Printed ZnO Thin Films Induced by Low-Temperature Vapor Post-Treatment.

Nanomaterials (Basel)

December 2024

Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Portici Research Centre, P.le E. Fermi 1, Portici, 80055 Naples, Italy.

In recent years, the morphology control of semiconductor nanomaterials has been attracting increasing attention toward maximizing their functional properties and reaching their end use in real-world devices. However, the development of easy and cost-effective methods for preparing large-scale patterned semiconductor structures on flexible temperature-sensitive substrates remains ever in demand. In this study, vapor post-treatment (VPT) is investigated as a potential, simple and low-cost post-preparative method to morphologically modify gravure-printed zinc oxide (ZnO) nanoparticulate thin films at low temperatures.

View Article and Find Full Text PDF

TiZrMoC coatings were deposited on Si(100) substrates using a DC dual magnetron sputtering. The composition was controlled by adjusting the sputtering parameters of the TiZrMo and graphite targets. The influence of graphite target current on the resulting coating properties was explored.

View Article and Find Full Text PDF

One-Step Fabrication Process of Silica-Titania Superhydrophobic UV-Blocking Thin Coatings onto Polymeric Films.

Biomimetics (Basel)

December 2024

Department of Chemistry, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.

Developing a durable multifunctional superhydrophobic coating on polymeric films that can be industrially scalable is a challenge in the field of surface engineering. This article presents a novel method for a scalable technology using a simple single-step fabrication of a superhydrophobic coating on polymeric films that exhibits excellent water-repelling and UV-blocking properties, along with impressive wear resistance and chemical robustness. A mixture of titanium precursors, tetraethylorthosilicate (TEOS), hydrophobic silanes and silica nano/micro-particles is polymerized directly on a corona-treated polymeric film which reacts with the surface via siloxane chemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!