Metastasis is the major cause for cancer patients' death, and despite all the recent advances in cancer research it is still mostly incurable. Understanding the mechanisms that are involved in the migration of the cells in a complex environment is a key step towards successful anti-metastatic treatment. Using experimental data-based modeling, we focus on the fundamentals of metastatic invasion: motility, invasion, proliferation and metabolism, and study how they may be combined to maximize the cancer's ability to metastasize. The modeled cells' performance is measured by the number of cells that succeed in migration in a maze, which mimics the extracellular environment. We show that co-existence of different cell clones in the tumor, as often found in experiments, optimizes the invasive ability in a frequently-changing environment. We study the role of metabolism and stimulation by growth factors, and show that metabolism plays a crucial role in the metastatic process and should therefore be targeted for successful treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4642550 | PMC |
http://dx.doi.org/10.1038/srep13538 | DOI Listing |
Mol Cancer Ther
January 2025
Indian Institute of Technology Madras, Madras, TN, India.
Most of the triple negative phenotype or basal-like molecular subtypes of breast cancers are associated with aggressive clinical behaviour and show poor disease prognosis. Current treatment options are constrained, emphasizing the need for novel combinatorial therapies for this particular tumor subtype. Our group has demonstrated that functionally active p21 activated kinase 1 (PAK1) exhibits significantly higher expression levels in clinical triple negative breast cancer (TNBC) samples compared to other subtypes, as well as adjacent normal tissues.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Digestive Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University Xi'an, Shaanxi, China.
N staging systems are paramount clinical features for colorectal cancer (CRC). In N1 stage (N1) CRC, patients present with a limited number of metastatic lymph nodes, yet their prognoses vary widely. The tumor invasion proportion of lymph nodes (TIPLN) has gained attention, but its prognostic value in N1 CRC remains unclear.
View Article and Find Full Text PDFAm J Cancer Res
December 2024
Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, Zhejiang, China.
Esophageal squamous cell carcinoma (ESCC), the most predominant subtype of esophageal cancer, is notorious for its high lymph node metastatic potential and poor prognosis. Growing evidence has demonstrated crucial function of circRNAs in human malignancies. However, the knowledge of circRNAs in lymph node metastasis of ESCC is still inadequate.
View Article and Find Full Text PDFBackground: High levels of catecholamines are cardiotoxic and associated with stress-induced cardiomyopathies. Septic patients are routinely exposed to endogenously released and exogenously administered catecholamines, which may alter cardiac function and perfusion causing ischemia. Early during human septic shock, left ventricular ejection fraction (LVEF) decreases but normalizes in survivors over 7-10 days.
View Article and Find Full Text PDFCureus
December 2024
Pathology, Avalon University School of Medicine, Willemstad, CUW.
Dermatofibrosarcoma protuberans (DFSP) is a rare, locally invasive cutaneous sarcoma with a high propensity for recurrence, even following complete surgical excision. DFSP exhibits a low metastatic potential and is characterized by a distinctive honeycomb-like architecture composed of uniformly arranged spindle cells that frequently show CD34 immunostaining. Common surgical approaches include wide local excision (WLE), Mohs micrographic surgery (MMS), and, in severe cases, amputation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!