We describe a mobile CO2 scrubbing platform that offers a greatly accelerated biomimetic sequestration based on a self-propelled carbonic anhydrase (CA) functionalized micromotor. The CO2 hydration capability of CA is coupled with the rapid movement of catalytic micromotors, and along with the corresponding fluid dynamics, results in a highly efficient mobile CO2 scrubbing microsystem. The continuous movement of CA and enhanced mass transport of the CO2 substrate lead to significant improvements in the sequestration efficiency and speed over stationary immobilized or free CA platforms. This system is a promising approach to rapid and enhanced CO2 sequestration platforms for addressing growing concerns over the buildup of greenhouse gas.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.201505155DOI Listing

Publication Analysis

Top Keywords

mobile co2
8
co2 scrubbing
8
co2
5
micromotor-based biomimetic
4
biomimetic carbon
4
carbon dioxide
4
sequestration
4
dioxide sequestration
4
sequestration mobile
4
mobile microscrubbers
4

Similar Publications

This paper provides an overview of the INGENIOUS (UnderstandING the sourcEs, traNsformations and fates of IndOor air pollUtantS) project, aiming to better understand air pollution in homes. Although our homes are the microenvironment in which we spend most of our time, we know relatively little about the sources, transformation processes and fates of indoor air pollutants, or our exposure to them. INGENIOUS aims to address this knowledge gap by delivering: an indoor emissions inventory for UK homes; comprehensive air pollutant measurements in 310 homes in Bradford using a combination of low cost-sensors and more advanced air quality instrumentation; an analysis of the impact of indoor air pollution on outdoor air quality and using mobile measurements; insight into future indoor air quality using detailed air pollution models; identification of indoor air pollutants that warrant further toxicological study; and better understanding of the barriers and facilitators for behaviour that drives improved indoor air quality.

View Article and Find Full Text PDF

Initial Carbonation of Ni(111) Surfaces.

ACS Appl Mater Interfaces

January 2025

Department of Chemistry, The University of Texas at San Antonio, San Antonio, Texas 78249, United States.

Understanding the carbon formation on Ni surfaces is critical for the controlled Ni-based nanofabrication and heterogeneous catalysis. Due to the high solubility of carbon in nickel and the complicated migrations of carbon in the near-surface area, achieving a fundamental understanding of the initial carbonation of a Ni surface at an atomic level is experimentally challenging. Herein, the initial formation of surface carbon adsorbates on Ni(111) from the Boudouard reaction (2CO ↔ CO + C) is studied by scanning tunneling microscopy (STM) in combination with density functional theory (DFT) calculations.

View Article and Find Full Text PDF

Facilitated transport membranes (FTMs) with an ultraselective layer prepared from amine-rich polyvinylamine (PVAm)/2-(1-piperazinyl)ethylamine salt of sarcosine (PZEA-Sar) (denoted by PM) and an amorphous dendritic cross-linked network of PVAm-functionalized poly(ethylene glycol)diglycidyl ether (PEGDGE) (named PP) were designed for CO separations. The developed membranes expedited CO transport over N through the synergistic effect from the induced CO-philic ethylene oxide groups and highly hydrophilic and polar hydroxyl groups together with the low-crystallinity PP networks, which offer a high diffusion rate for CO-amine complexes through the membrane and stabilize small molecular mobile carriers via hydrogen bonding. The best (PM/PP-10)/polysulfone (PSf) composite membranes achieved a superior CO/N selectivity of 230 (4.

View Article and Find Full Text PDF

Exposure of cell cultures at air-liquid interface (ALI), mimicking i.e. human lung surface, is believed to be one of the most realistic means to model toxicity of complex mixtures of pollutants on human health.

View Article and Find Full Text PDF

Elevated CO Increased Antibiotic Resistomes in Seed Endophytes: Evidence from a Free-Air CO Enrichment (FACE) Experiment.

Environ Sci Technol

December 2024

Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.

Climate warming affects antibiotic resistance genes (ARGs) in soil and the plant microbiome, including seed endophytes. Seeds act as vectors for ARG dissemination in the soil-plant system, but the impact of elevated CO on seed resistomes remains poorly understood. Here, a free-air CO enrichment system was used to examine the impact of elevated CO on seed-associated ARGs and seed endophytic bacteria and fungi.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!