Odontoceti and Mysticeti (toothed and baleen whales) originated from Eocene archaeocetes that had evolved from terrestrial artiodactyls. Cranial asymmetry is known in odontocetes that can hear ultrasound (>20,000 Hz) and has been linked to the split function of the nasal passage in breathing and vocalization. Recent results indicate that archaeocetes also had asymmetric crania. Their asymmetry has been linked to directional hearing in water, although hearing frequencies are still under debate. Mysticetes capable of low-frequency and infrasonic hearing (<20 Hz) are assumed to have symmetric crania. This study aims to resolve whether mysticete crania are indeed symmetric and whether mysticete cranial symmetry is plesiomorphic or secondary. Cranial shape was analyzed applying geometric morphometrics to three-dimensional (3D) cranial models of fossil and modern mysticetes, Eocene archaeocetes, modern artiodactyls, and modern odontocetes. Statistical tests include analysis of variance, principal components analysis, and discriminant function analysis. Results suggest that symmetric shape difference reflects general trends in cetacean evolution. Asymmetry includes significant fluctuating and directional asymmetry, the latter being very small. Mysticete crania are as symmetric as those of terrestrial artiodactyls and archaeocetes, without significant differences within Mysticeti. Odontocete crania are more asymmetric. These results indicate that (1) all mysticetes have symmetric crania, (2) archaeocete cranial asymmetry is not conspicuous in most of the skull but may yet be conspicuous in the rostrum, (3) directional cranial asymmetry is an odontocete specialization, and (4) directional cranial asymmetry is more likely related to echolocation than hearing.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00114-015-1309-0 | DOI Listing |
Conserv Physiol
January 2025
Geospatial Ecology of Marine Megafauna Lab, Marine Mammal Institute, Department of Fisheries, Wildlife and Conservation Sciences, Oregon State University, 2030 SE Marine Science Dr, Newport, OR 97365, USA.
Understanding wildlife reproductive seasonality is crucial for effective management and long-term monitoring of species. This study investigates the seasonal variability of testosterone in male Pacific Coast Feeding Group (PCFG) gray whales, using an eight-year dataset (2016-2023) of individual sightings, drone-based photogrammetry and endocrine analysis of faecal samples. We analyzed the relationship between faecal testosterone levels and total body length (TL), body condition (body area index, BAI), sexual maturity and day of the year using generalized additive mixed models.
View Article and Find Full Text PDFVet Res Commun
January 2025
Setor de Patologia Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
Southern right whales (Eubalaena australis) are mysticete cetaceans commonly observed in the coastal waters of Brazil, particularly in Santa Catarina State. There is limited understanding of the causes of calf mortality in this species, particularly concerning infectious diseases. We report a case of omphalophlebitis caused by Streptococcus equi subsp.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Biology, Dalhousie University, Halifax, NS, Canada.
Baleen whales are among the largest marine megafauna, and while mostly well-protected from direct exploitation, they are increasingly affected by vessel traffic, interactions with fisheries, and climate change. Adverse interactions, notably vessel strikes and fishing gear entanglement, often result in distress, injury, or death for these animals. In Atlantic Canadian waters, such negative interactions or 'incidents' are consistently reported to marine animal response organizations but have not yet been analyzed relative to the spatial distribution of whales and vessels.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Mechanical Electrical and Information Engineering, Shandong University, Weihai 264209, China.
Feature selection (FS) is a key process in many pattern-recognition tasks, which reduces dimensionality by eliminating redundant or irrelevant features. However, for complex high-dimensional issues, traditional FS methods cannot find the ideal feature combination. To overcome this disadvantage, this paper presents a multispiral whale optimization algorithm (MSWOA) for feature selection.
View Article and Find Full Text PDFConserv Physiol
December 2024
Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!