Otologic surgery often involves a mastoidectomy, which is the removal of a portion of the mastoid region of the temporal bone, to safely access the middle and inner ear. The surgery is challenging because many critical structures are embedded within the bone, making them difficult to see and requiring a high level of accuracy with the surgical dissection instrument, a high-speed drill. We propose to automate the mastoidectomy portion of the surgery using a compact, bone-attached robot. The system described in this paper is a milling robot with four degrees-of-freedom (DOF) that is fixed to the patient during surgery using a rigid positioning frame screwed into the surface of the bone. The target volume to be removed is manually identified by the surgeon pre-operatively in a computed tomography (CT) scan and converted to a milling path for the robot. The surgeon attaches the robot to the patient in the operating room and monitors the procedure. Several design considerations are discussed in the paper as well as the proposed surgical workflow. The mean targeting error of the system in free space was measured to be 0.5 mm or less at vital structures. Four mastoidectomies were then performed in cadaveric temporal bones, and the error at the edges of the target volume was measured by registering a postoperative computed tomography (CT) to the pre-operative CT. The mean error along the border of the milled cavity was 0.38 mm, and all critical anatomical structures were preserved.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4547504 | PMC |
http://dx.doi.org/10.1115/1.4030083 | DOI Listing |
J Med Device
September 2015
Department of Mechanical Engineering, Vanderbilt University, 2301 Vanderbilt Place , PMB 351592 , Nashville, TN 37235 e-mail:
Otologic surgery often involves a mastoidectomy, which is the removal of a portion of the mastoid region of the temporal bone, to safely access the middle and inner ear. The surgery is challenging because many critical structures are embedded within the bone, making them difficult to see and requiring a high level of accuracy with the surgical dissection instrument, a high-speed drill. We propose to automate the mastoidectomy portion of the surgery using a compact, bone-attached robot.
View Article and Find Full Text PDFProc SPIE Int Soc Opt Eng
March 2014
Vanderbilt University, Department of Mechanical Engineering, Nashville, Tennessee, USA ; Vanderbilt University, Department of Otolaryngology, Nashville, Tennessee, USA.
Otologic surgery often involves a mastoidectomy procedure, in which part of the temporal bone is milled away in order to visualize critical structures embedded in the bone and safely access the middle and inner ear. We propose to automate this portion of the surgery using a compact, bone-attached milling robot. A high level of accuracy is required to avoid damage to vital anatomy along the surgical path, most notably the facial nerve, making this procedure well-suited for robotic intervention.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!