The Rab GTPase-activating protein TBC1D4 (AS160) controls trafficking of the glucose transporter GLUT4 in adipocytes and skeletal muscle cells. TBC1D4 is also highly abundant in the renal distal tubule, although its role in this tubule is so far unknown. In vitro studies suggest that it is involved in the regulation of renal transporters and channels such as the epithelial sodium channel (ENaC), aquaporin-2 (AQP2), and the Na+-K+-ATPase. To assess the physiological role of TBC1D4 in the kidney, wild-type (TBC1D4+/+) and TBC1D4-deficient (TBC1D4-/-) mice were studied. Unexpectedly, neither under standard nor under challenging conditions (low Na+/high K+, water restriction) did TBC1D4-/- mice show any difference in urinary Na+ and K+ excretion, urine osmolarity, plasma ion and aldosterone levels, and blood pressure compared with TBC1D4+/+ mice. Also, immunoblotting did not reveal any change in the abundance of major renal sodium- and water-transporting proteins [Na-K-2Cl cotransporter (NKCC2) NKCC2, NaCl cotransporter (NCC), ENaC, AQP2, and the Na+-K+-ATPase]. However, the abundance of GLUT4, which colocalizes with TBC1D4 along the distal nephron of TBC1D4+/+ mice, was lower in whole kidney lysates of TBC1D4-/- mice than in TBC1D4+/+ mice. Likewise, primary thick ascending limb (TAL) cells isolated from TBC1D4-/- mice showed an increased basal glucose uptake and an abrogated insulin response compared with TAL cells from TBC1D4+/+ mice. Thus, TBC1D4 is dispensable for the regulation of renal Na+ and water transport, but may play a role for GLUT4-mediated basolateral glucose uptake in distal tubules. The latter may contribute to the known anaerobic glycolytic capacity of distal tubules during renal ischemia.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajprenal.00139.2015 | DOI Listing |
Mol Metab
October 2024
Research Group Nutrigenomics of Obesity and Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany; German Center for Diabetes Research (DZD e.V.), München, Neuherberg, Germany. Electronic address:
Objective: Picalm (phosphatidylinositol-binding clathrin assembly protein), a ubiquitously expressed clathrin-adapter protein, is a well-known susceptibility gene for Alzheimer's disease, but its role in white adipose tissue (WAT) function has not yet been studied. Transcriptome analysis revealed differential expression of Picalm in WAT of diabetes-prone and diabetes-resistant mice, hence we aimed to investigate the potential link between Picalm expression and glucose homeostasis, obesity-related metabolic phenotypes, and its specific role in insulin-regulated GLUT4 trafficking in adipocytes.
Methods: Picalm expression and epigenetic regulation by microRNAs (miRNAs) and DNA methylation were analyzed in WAT of diabetes-resistant (DR) and diabetes-prone (DP) female New Zealand Obese (NZO) mice and in male NZO after time-restricted feeding (TRF) and alternate-day fasting (ADF).
Diabetes
November 2024
Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin 300052, China.
The translocon-associated protein-δ (TRAPδ) plays a role in insulin biosynthesis within pancreatic β-cells. However, its pathophysiological significance in maintaining islet β-cell function and glucose homeostasis remains unclear. In this study, we generated a mouse model featuring pancreatic β-cell-specific deletion of TRAPδ (TRAPδ βKO).
View Article and Find Full Text PDFCardiovasc Diabetol
July 2024
Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
Autophagy
November 2024
International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu, China.
Macroautophagic/autophagic and endocytic pathways play essential roles in maintaining homeostasis at different levels. It remains poorly understood how both pathways are coordinated and fine-tuned for proper lysosomal degradation of diverse cargoes. We and others recently identified a Golgi-resident RAB GTPase, RAB2A, as a positive regulator that controls both autophagic and endocytic pathways.
View Article and Find Full Text PDFbioRxiv
June 2024
Departments of Pharmacology, UT Southwestern Medical Center, Dallas, USA.
Certain areas of the brain involved in episodic memory and behavior, such as the hippocampus, express high levels of insulin receptors and glucose transporter-4 (GLUT4) and are responsive to insulin. Insulin and neuronal glucose metabolism improve cognitive functions and regulate mood in humans. Insulin-dependent GLUT4 trafficking has been extensively studied in muscle and adipose tissue, but little work has demonstrated either how it is controlled in insulin-responsive brain regions or its mechanistic connection to cognitive functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!