A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Truncation of POC1A associated with short stature and extreme insulin resistance. | LitMetric

Truncation of POC1A associated with short stature and extreme insulin resistance.

J Mol Endocrinol

The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK The University of Cambridge Metabolic Research Laboratories Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK The National Institute for Health Research Cambridge Biomedical Research Centre Cambridge, UK Department of Pediatrics Sapienza University, Rome, Italy Metabolic Disease Group Wellcome Trust Sanger Institute, Cambridge, UK Wolfson Brain Imaging Centre University of Cambridge, Cambridge, UK National Institute for Health Research/Wellcome Trust Clinical Research Facility Cambridge, UK

Published: October 2015

We describe a female proband with primordial dwarfism, skeletal dysplasia, facial dysmorphism, extreme dyslipidaemic insulin resistance and fatty liver associated with a novel homozygous frameshift mutation in POC1A, predicted to affect two of the three protein products of the gene. POC1A encodes a protein associated with centrioles throughout the cell cycle and implicated in both mitotic spindle and primary ciliary function. Three homozygous mutations affecting all isoforms of POC1A have recently been implicated in a similar syndrome of primordial dwarfism, although no detailed metabolic phenotypes were described. Primary cells from the proband we describe exhibited increased centrosome amplification and multipolar spindle formation during mitosis, but showed normal DNA content, arguing against mitotic skipping, cleavage failure or cell fusion. Despite evidence of increased DNA damage in cells with supernumerary centrosomes, no aneuploidy was detected. Extensive centrosome clustering both at mitotic spindles and in primary cilia mitigated the consequences of centrosome amplification, and primary ciliary formation was normal. Although further metabolic studies of patients with POC1A mutations are warranted, we suggest that POC1A may be added to ALMS1 and PCNT as examples of centrosomal or pericentriolar proteins whose dysfunction leads to extreme dyslipidaemic insulin resistance. Further investigation of links between these molecular defects and adipose tissue dysfunction is likely to yield insights into mechanisms of adipose tissue maintenance and regeneration that are critical to metabolic health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4722288PMC
http://dx.doi.org/10.1530/JME-15-0090DOI Listing

Publication Analysis

Top Keywords

insulin resistance
12
primordial dwarfism
8
extreme dyslipidaemic
8
dyslipidaemic insulin
8
primary ciliary
8
centrosome amplification
8
adipose tissue
8
poc1a
5
truncation poc1a
4
poc1a associated
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!