In this work we explore a support-induced structural organization of object parts. We introduce the concept of support substructures, which are special subsets of object parts with support and stability. A bottom-up approach is proposed to identify such substructures in a support relation graph. We apply the derived high-level substructures to part-based shape reshuffling between models, resulting in nontrivial functionally plausible model variations that are difficult to achieve with symmetry-induced substructures by the state-of-the-art methods. We also show how to automatically or interactively turn a single input model to new functionally plausible shapes by structure rearrangement and synthesis, enabled by support substructures. To the best of our knowledge no single existing method has been designed for all these applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2015.2473845 | DOI Listing |
Cureus
December 2024
Physics and Engineering, London Regional Cancer Program, London, CAN.
Introduction: Radiation may unintentionally injure myocardial tissue, potentially leading to radiation-induced cardiac disease (RICD), with the net benefit of non-small cell lung cancer (NSCLC) radiotherapy (RT) due to the proximity of the lung and heart. RTOG-0617 showed a greater reduction in overall survival (OS) comparing higher doses to standard radiation doses in NSCLC RT. VHeart has been reported as an OS predictor in the first- and fifth-year follow-ups.
View Article and Find Full Text PDFJ Cheminform
January 2025
Department of Intelligent Electronics and Computer Engineering, Chonnam National University, Gwangju, Republic of Korea.
The human ether-a-go-go-related gene (hERG) channel plays a critical role in the electrical activity of the heart, and its blockers can cause serious cardiotoxic effects. Thus, screening for hERG channel blockers is a crucial step in the drug development process. Many in silico models have been developed to predict hERG blockers, which can efficiently save time and resources.
View Article and Find Full Text PDFInorg Chem
January 2025
Institute of Solid State Physics, TU Wien, A-1040 Vienna, Austria.
A novel ternary boride, NiPtB ( = 0.5), was obtained by argon-arc melting of the elements followed by annealing at 750 °C. It exhibits a new structure type with the space group ( = 2.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
School of Biomedical Engineering and Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China; Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, 1023 Shatai Road, Guangzhou 510515, China; Pazhou Lab, Guangzhou 510330, China. Electronic address:
Background And Objectives: Accurate prediction of progression in knee osteoarthritis (KOA) is significant for early personalized intervention. Previous methods commonly focused on quantifying features from a specific sub-structure imaged at baseline and resulted in limited performance. We proposed a longitudinal MRI sub-structural texture-guided graph convolution network (LMSST-GCN) for improved KOA progression prediction.
View Article and Find Full Text PDFSci Adv
January 2025
Jodrell Bank Centre for Astrophysics, Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
Long-period radio transients are a new class of astrophysical objects that exhibit periodic radio emission on timescales of tens of minutes. Their true nature remains unknown; possibilities include magnetic white dwarfs, binary systems, or long-period magnetars; the latter class is predicted to produce fast radio bursts (FRBs). Using the MeerKAT radio telescope, we conducted follow-up observations of the long-period radio transient GPM J1839-10.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!