Compressive sensing enables the reconstruction of high-resolution signals from under-sampled data. While the compressive methods simplify data acquisition, they require the solution of difficult recovery problems to make use of the resulting measurements. This paper presents a new sensing framework that combines the advantages of both the conventional and the compressive sensing. Using the proposed sum-to-one transform, the measurements can be reconstructed instantly at the Nyquist rates at any power-of-two resolution. The same data can then be enhanced to higher resolutions using the compressive methods that leverage sparsity to beat the Nyquist limit. The availability of a fast direct reconstruction enables the compressive measurements to be processed on small embedded devices. We demonstrate this by constructing a real-time compressive video camera.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TIP.2015.2474697DOI Listing

Publication Analysis

Top Keywords

compressive video
8
compressive sensing
8
compressive methods
8
compressive
7
stone transform
4
transform multi-resolution
4
multi-resolution image
4
image enhancement
4
enhancement compressive
4
video compressive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!