Post-translational modification of the histone plays important roles in epigenetic regulation of various biological processes. Among the identified histone methyltransferases (HMTases), G9a is a histone H3 Lys 9 (H3K9)-specific example active in euchromatic regions. Drosophila G9a (dG9a) has been reported to feature H3K9 dimethylation activity in vivo. Here, we show that the time required for hatching of a homozygous dG9a null mutant and heteroallelic combination of dG9a null mutants is delayed, suggesting that dG9a is at least partially responsible for progression of embryogenesis. Immunocytochemical analyses of the wild-type and the dG9a null mutant flies indicated that dG9a localizes in cytoplasm up to nuclear division cycle 7 where it is likely responsible for di-methylation of nucleosome-free H3K9. From cycles 8-11, dG9a moves into the nucleus and is responsible for di-methylating H3K9 in nucleosomes. RNA-sequence analysis utilizing early wild-type and dG9a mutant embryos showed that dG9a down-regulates expression of genes responsible for embryogenesis. RNA fluorescent in situ hybridization analysis further showed temporal and spatial expression patterns of these mRNAs did not significantly change in the dG9a mutant. These results indicate that dG9a controls transcription levels of some zygotic genes without changing temporal and spatial expression patterns of the transcripts of these genes.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gtc.12281DOI Listing

Publication Analysis

Top Keywords

dg9a
12
dg9a null
12
null mutant
8
wild-type dg9a
8
dg9a mutant
8
temporal spatial
8
spatial expression
8
expression patterns
8
genomewide identification
4
identification target
4

Similar Publications

Distinct CoREST complexes act in a cell-type-specific manner.

Nucleic Acids Res

December 2019

Institute of Molecular Biology and Tumor Research, Biomedical Research Center, Philipps-University, Hans-Meerwein-Strasse 2, 35043, Marburg, Germany.

CoREST has been identified as a subunit of several protein complexes that generate transcriptionally repressive chromatin structures during development. However, a comprehensive analysis of the CoREST interactome has not been carried out. We use proteomic approaches to define the interactomes of two dCoREST isoforms, dCoREST-L and dCoREST-M, in Drosophila.

View Article and Find Full Text PDF

Organisms have developed behavioral strategies to defend themselves from starvation stress. Despite of their importance in nature, the underlying mechanisms have been poorly understood. Here, we show that Drosophila G9a (dG9a), one of the histone H3 Lys 9-specific histone methyltransferases, functions as a key regulator for the starvation-induced behaviors.

View Article and Find Full Text PDF

Epigenetics is now emerging as a key regulation in response to various stresses. We herein identified the Drosophila histone methyltransferase G9a (dG9a) as a key factor to acquire tolerance to starvation stress. The depletion of dG9a led to high sensitivity to starvation stress in adult flies, while its overexpression induced starvation stress resistance.

View Article and Find Full Text PDF

Genome-wide genetic screen identified the link between dG9a and epidermal growth factor receptor signaling pathway in vivo.

Exp Cell Res

August 2016

Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan. Electronic address:

G9a is one of the histone H3 Lys 9 (H3K9) specific methyltransferases first identified in mammals. Drosophila G9a (dG9a) has been reported to induce H3K9 dimethylation in vivo, and the target genes of dG9a were identified during embryonic and larval stages. Although dG9a is important for a variety of developmental processes, the link between dG9a and signaling pathways are not addressed yet.

View Article and Find Full Text PDF

Post-translational modification of the histone plays important roles in epigenetic regulation of various biological processes. Among the identified histone methyltransferases (HMTases), G9a is a histone H3 Lys 9 (H3K9)-specific example active in euchromatic regions. Drosophila G9a (dG9a) has been reported to feature H3K9 dimethylation activity in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!