PepExplorer aids in the biological interpretation of de novo sequencing results; this is accomplished by assembling a list of homolog proteins obtained by aligning results from widely adopted de novo sequencing tools against a target-decoy sequence database. Our tool relies on pattern recognition to ensure that the results satisfy a user-given false-discovery rate (FDR). For this, it employs a radial basis function neural network that considers the precursor charge states, de novo sequencing scores, the peptide lengths, and alignment scores. PepExplorer is recommended for studies addressing organisms with no genomic sequence available. PepExplorer is integrated into the PatternLab for proteomics environment, which makes available various tools for downstream data analysis, including the resources for quantitative and differential proteomics.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/0471250953.bi1327s51 | DOI Listing |
Am J Hum Genet
January 2025
UC Santa Cruz Genomics Institute, University of California, Santa Cruz, Santa Cruz, CA, USA. Electronic address:
More than 50% of families with suspected rare monogenic diseases remain unsolved after whole-genome analysis by short-read sequencing (SRS). Long-read sequencing (LRS) could help bridge this diagnostic gap by capturing variants inaccessible to SRS, facilitating long-range mapping and phasing and providing haplotype-resolved methylation profiling. To evaluate LRS's additional diagnostic yield, we sequenced a rare-disease cohort of 98 samples from 41 families, using nanopore sequencing, achieving per sample ∼36× average coverage and 32-kb read N50 from a single flow cell.
View Article and Find Full Text PDFViruses
January 2025
Bioinformatics and Biotechnology Laboratory, Campus of Gurupi, Federal University of Tocantins, Gurupi 77410-570, Brazil.
SARS-CoV-2, the virus responsible for COVID-19, has undergone significant genetic evolution since its emergence in 2019. This study examines the genomic diversity of SARS-CoV-2 in Brazil after the worst phase of the pandemic, the wider adoption of routine vaccination, and the abolishment of other non-pharmacological preventive measures from July 2022 to July 2024 using 55,951 sequences retrieved from the GISAID database. The analysis focuses on the correlation between confirmed COVID-19 cases, sequencing efforts across Brazilian states, and the distribution and evolution of viral lineages.
View Article and Find Full Text PDFViruses
December 2024
School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China.
De novo synthesis of phage genomes enables flexible genome modification and simplification. This study explores the synthetic genome assembly of phage vB_PaeS_SCUT-S4 (S4), a 42,932 bp headful packaging phage, which encapsidates a terminally redundant, double-stranded DNA genome exceeding unit length. We demonstrate that using the yeast TAR approach, the S4 genome can be assembled and rebooted from a unit-length genome plus a minimal 60 bp terminal redundant sequence.
View Article and Find Full Text PDFViruses
December 2024
Beijing Youcare Kechuang Pharmaceutical Technology Co., Ltd., Beijing 100176, China.
Human respiratory syncytial virus (RSV) remains a significant global health threat, particularly for vulnerable populations. Despite extensive research, effective antiviral therapies are still limited. To address this urgent need, we present AVP-GPT2, a deep-learning model that significantly outperforms its predecessor, AVP-GPT, in designing and screening antiviral peptides.
View Article and Find Full Text PDFPharmaceutics
January 2025
Laboratory Medical Immunology, Department of Laboratory Medicine, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands.
Multiple Myeloma (MM) is a hematologic malignancy caused by clonally expanded plasma cells that produce a monoclonal immunoglobulin (M-protein), a personalized biomarker. Recently, we developed an ultra-sensitive mass spectrometry method to quantify minimal residual disease (MS-MRD) by targeting unique M-protein peptides. Therapeutic antibodies (t-Abs), key in MM treatment, often lead to deep and long-lasting responses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!