Background: Aflatoxin is a potent carcinogen that can contaminate grain infected with the fungus Aspergillus flavus. However, resistance to aflatoxin accumulation in maize is a complex trait with low heritability. Here, two complementary analyses were performed to better understand the mechanisms involved. The first coupled results of a genome-wide association study (GWAS) that accounted for linkage disequilibrium among single nucleotide polymorphisms (SNPs) with gene-set enrichment for a pathway-based approach. The rationale was that the cumulative effects of genes in a pathway would give insight into genetic differences that distinguish resistant from susceptible lines of maize. The second involved finding non-pathway genes close to the most significant SNP-trait associations with the greatest effect on reducing aflatoxin in multiple environments. Unlike conventional GWAS, the latter analysis emphasized multiple aspects of SNP-trait associations rather than just significance and was performed because of the high genotype x environment variability exhibited by this trait.
Results: The most significant metabolic pathway identified was jasmonic acid (JA) biosynthesis. Specifically, there was at least one allelic variant for each step in the JA biosynthesis pathway that conferred an incremental decrease to the level of aflatoxin observed among the inbred lines in the GWAS panel. Several non-pathway genes were also consistently associated with lowered aflatoxin levels. Those with predicted functions related to defense were: leucine-rich repeat protein kinase, expansin B3, reversion-to-ethylene sensitivity1, adaptor protein complex2, and a multidrug and toxic compound extrusion protein.
Conclusions: Our genetic analysis provided strong evidence for several genes that were associated with aflatoxin resistance. Inbred lines that exhibited lower levels of aflatoxin accumulation tended to share similar haplotypes for genes specifically in the pathway of JA biosynthesis, along with several non-pathway genes with putative defense-related functions. Knowledge gained from these two complementary analyses has improved our understanding of population differences in aflatoxin resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558830 | PMC |
http://dx.doi.org/10.1186/s12864-015-1874-9 | DOI Listing |
Toxins (Basel)
December 2024
Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA.
Maize is one of the major crops that are susceptible to infection and subsequent aflatoxin contamination, which poses a serious health threat to humans and domestic animals. Here, an RNA interference (RNAi) approach called Host-Induced Gene Silencing (HIGS) was employed to suppress the -methyl transferase gene (, also called ), a key gene involved in aflatoxin biosynthesis. An RNAi vector carrying part of the gene was introduced into the B104 maize line.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
Conquering surface fouling of sensors caused by nonspecific adsorption and accumulation of foulants in a food matrix is of significance in accurate food safety analysis. Herein, an antifouling electrochemical aptasensor based on a Y-shaped peptide and nanoporous gold (NPG) for aflatoxin B1 detection in milk, tofu, and rice flour was proposed. The self-designed Y-shaped peptide involves an anchoring segment (-C), a support structure (-PPPP-), and an antifouling domain with two branches (-EK(KSRE)DER-) inspired by two bioactive peptides.
View Article and Find Full Text PDFFood Chem
December 2024
Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:
Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.
View Article and Find Full Text PDFNPJ Sci Food
December 2024
Laboratory of Entomology, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands.
Groundnuts are considered as one of the most important cultivated food crops globally. Groundnuts are used for vegetable oil production, which generate a variety of by-products, such as peanut press cake (PPC). Groundnuts are sensitive to infection by aflatoxigenic fungi.
View Article and Find Full Text PDFAnim Nutr
December 2024
Laboratory of Aquatic Animal Nutrition and Feed, College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China.
With the increasing incorporation of plant-based ingredients into the grouper diet, the issue of aflatoxin B1 (AFB1) contamination in the diet has become a significant concern. In this study, the negative effects of AFB1 on the growth and liver health of hybrid groupers (♀ × ♂) were investigated in the context of growth, liver histology, serum biochemical indices, and integrated transcriptomic and metabolomic data. A total of 540 healthy hybrid groupers, initially weighing 11.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!