Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Asperchalasine A (1), the first cytochalasan dimer featuring a unique decacyclic 5/6/11/5/5/6/5/11/6/5 ring system consisting of 20 chiral centers, was isolated from the culture broth of Aspergillus flavipes. Three biogenetically related intermediates, asperchalasines B-D (2-4), were also isolated. Their structures, including their absolute configurations, were elucidated using a combination of HRESIMS, NMR, ECD, molecular modeling, and single-crystal X-ray diffraction techniques. Compound 1, which possesses an unprecedented 13-oxatetracyclo[7.2.1.1(2,5).0(1,6)]tridec-8,12-dione core structure, is the first example of a dimeric cytochalasan alkaloid. The biogenetic pathways of 1-4 were described starting from the co-isolated compounds 5 and 6. More importantly, 1 induced significant G1-phase cell cycle arrest by selectively inhibiting cyclin A, CDK2 and CDK6 in cancerous, but not normal, cells, highlighting it as a potentially selective cell cycle regulator against cancer cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201506264 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!