The aim of our study was to improve the bioavailability of acyclovir (ACV) by delivery of mucoadhesive nanoparticles (NPs) and controlled delivery of drug at its absorption window. Central composite design was used by which the effects of independent variables (gelatin and Pluronic F-68) on various responses such as particle size, polydispersity index, entrapment efficiency, loading efficiency, drug release and mucoadhesive strength were studied. The optimised formulation was evaluated for morphology, stability, pharmacokinetic and gastrointestinal tracking. The optimised NPs were found to be nearly spherical. Changes in characteristics of NPs were not significant after six months of accelerated stability studies. In vivo mucoadhesion study showed significant retention of mucoadhesive NPs in upper gastro-intestinal tract for more than 12 h. Pharmacokinetic study in rats revealed that mucoadhesive NPs could maintain relatively steady plasma concentration of ACV for more than 10 h. The AUC0-∞ and mean residence time of optimised formulation (7527.9 ng h/mL and 12.09 h) were significantly high than tablet dispersion (3841.13 ng h/mL and 7.97 h).

Download full-text PDF

Source
http://dx.doi.org/10.3109/02652048.2015.1010457DOI Listing

Publication Analysis

Top Keywords

mucoadhesive nanoparticles
8
optimised formulation
8
mucoadhesive nps
8
mucoadhesive
5
nps
5
development optimisation
4
optimisation mucoadhesive
4
nanoparticles acyclovir
4
acyclovir design
4
design experiments
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!