Background: The precise aetiology of schizophrenia remains unclear. The neurodevelopmental hypothesis of schizophrenia has been proposed based on the accumulation of genomic or neuroimaging studies.
Objective: In this study, we examined the catecholaminergic neuronal networks in the frontal cortices of disrupted-in-schizophrenia 1 (DISC1) knockout (KO) mice, which are considered to be a useful model of schizophrenia.
Methods: Six DISC1 homozygous KO mice and six age-matched littermates were used. The animals' brains were cut into 20-μm-thick slices, which were then immunohistochemically stained using an anti-tyrosine hydroxylase (TH) monoclonal antibody.
Results: The TH-immunopositive fibres detected in the orbitofrontal cortices of the DISC1 KO mice were significantly shorter than those seen in the wild-type mice.
Conclusion: These neuropathological findings indicate that the hypofrontal symptoms of schizophrenia are associated with higher mental function deficiencies or cognitive dysfunction such as a loss of working memory.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1017/neu.2015.51 | DOI Listing |
Comp Biochem Physiol C Toxicol Pharmacol
January 2025
Laboratório Integrado de Biociências Translacionais - Instituto de Biodiversidade e Sustentabilidade - NUPEM - Universidade Federal do Rio de Janeiro - UFRJ, Macaé, RJ, Brazil; Pós-Graduação em Produtos Bioativos e Biociências - Universidade Federal do Rio de Janeiro - UFRJ, Macaé, RJ, Brazil; Pós-Graduação Multicêntrico em Ciências Fisiológicas - Instituto de Biodiversidade e Sustentabilidade - NUPEM - Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, RJ, Brazil; Pós-Graduação em Biociências e Biotecnologia - Universidade Estadual do Norte Fluminense Darcy Ribeiro - UENF - Campos dos Goytacazes, Rio de Janeiro, RJ, Brazil. Electronic address:
Paraquat (PQ) is a widely used herbicide; however, it has been linked to various diseases, including an increased risk of developing Parkinsonism. To study this, invertebrates such as ascidians have been used. They have a simple nervous system and are considered an emerging model for the study of neurodegenerative diseases.
View Article and Find Full Text PDFThe immune system shapes body metabolism, while interactions between peripheral neurons and immune cells control tissue homeostasis and immunity. However, whether peripheral neuroimmune interactions orchestrate endocrine system functions remains unexplored. After fasting, mice lacking type 2 innate lymphoid cells (ILC2s) displayed disrupted glucose homeostasis, impaired pancreatic glucagon secretion, and inefficient hepatic gluconeogenesis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA 94720.
Norepinephrine in vertebrates and its invertebrate analog, octopamine, regulate the activity of neural circuits. We find that, when hungry, larvae switch activity in type II octopaminergic motor neurons (MNs) to high-frequency bursts, which coincide with locomotion-driving bursts in type I glutamatergic MNs that converge on the same muscles. Optical quantal analysis across hundreds of synapses simultaneously reveals that octopamine potentiates glutamate release by tonic type Ib MNs, but not phasic type Is MNs, and occurs via the G-coupled octopamine receptor (OAMB).
View Article and Find Full Text PDFBiology (Basel)
November 2024
Institute of Protein Research, Russian Academy of Sciences, 119334 Moscow, Russia.
Neural precursor cells contain two types of intermediate filaments (IFs): neurofilaments consisting of three IV type proteins and vimentin belonging to the type III IF proteins that disappear at the later stages of differentiation. The involvement of vimentin in neurogenesis was demonstrated earlier; however, the role of its temporary expression in neurons is not clear. We showed that the vimentin IFs that interacted with mitochondria maintained their membrane potential at the appropriate level, and thus, ensured their proper function.
View Article and Find Full Text PDFCell Rep
January 2025
Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA; Department of Neurology, Columbia University, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!