Download full-text PDF

Source
http://dx.doi.org/10.1038/onc.2015.322DOI Listing

Publication Analysis

Top Keywords

role snai2
4
snai2 postlactational
4
postlactational involution
4
involution mammary
4
mammary gland
4
gland links
4
links luminal
4
luminal breast
4
breast cancer
4
cancer development
4

Similar Publications

Characterization of the Ocular Phenotype in a Col4a3 Knockout Mouse Model of Alport Syndrome.

Invest Ophthalmol Vis Sci

December 2024

Department of Ophthalmology, Eugene and Marilyn Glick Eye Institute, Indiana University School of Medicine, Indianapolis, Indiana, United States.

Purpose: Alport syndrome (AS) is a genetic condition caused by a dysfunctional collagen (IV) α3α4α5 heterotrimer, leading to basement membrane instability and, ultimately, abnormalities in the kidney, inner ear, and eyes. This study aimed to characterize ocular pathology of AS by focusing on inflammatory and fibrotic markers.

Methods: Col4a3tm1Dec knockout (KO) mice eyes were evaluated for the localization of collagen (IV) α3 and collagen (IV) α4, then stained for transforming growth factor-β1 (TGF-β1), TGF-β2, connective tissue growth factor (CTGF), and β-catenin.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a vascular disease associated with endothelial damage, plaque formation, and retinal neovascularization (RNV), leading to visual impairment. Research indicates that vascular endothelial dysfunction, lipid deposition, and inflammatory responses contribute to the formation of plaques and atherosclerotic lesions. Among the common complications, studies have shown that RNV and the molecular mechanisms of AS hold significant clinical importance.

View Article and Find Full Text PDF

Aldehyde dehydrogenases (ALDHs) constitute a diverse superfamily of NAD(P)-dependent enzymes pivotal in oxidizing endogenous and exogenous aldehydes to carboxylic acids. Beyond metabolic roles, ALDHs participate in essential biological processes, including differentiation, embryogenesis and the DNA damage response, while also serving as markers for cancer stem cells (CSCs). Aldehyde dehydrogenase 1B1 (ALDH1B1) is a mitochondrial enzyme involved in the detoxification of lipid peroxidation by-products and metabolism of various aldehyde substrates.

View Article and Find Full Text PDF
Article Synopsis
  • HOXB9 is a key transcriptional activator that enhances the invasion and metastasis of hepatocellular carcinoma (HCC) cells, but the exact mechanism behind this process is not fully understood.* -
  • The study found that HOXB9 upregulates SNAI2 expression while downregulating the tumor suppressor gene MIR203A, indicating a link between HOXB9, SNAI2, and HCC progression.* -
  • HOXB9 interacts with EZH2, which modifies histones to silence MIR203A, further promoting SNAI2 expression and thus facilitating HCC cell invasion and metastasis in research conducted through both laboratory and animal studies.*
View Article and Find Full Text PDF

Unraveling MLL1-fusion leukemia: Epigenetic revelations from an iPS cell point mutation.

J Biol Chem

November 2024

Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, United States. Electronic address:

Our understanding of acute leukemia pathology is heavily dependent on 11q23 chromosomal translocations involving the mixed lineage leukemia-1 (MLL1) gene, a key player in histone H3 lysine 4 (H3K4) methylation. These translocations result in MLL1-fusion (MLL1) proteins that are thought to drive leukemogenesis. However, the mechanism behind increased H3K4 trimethylation in MLL1-leukemic stem cells (MLL1-LSCs), following loss of the catalytic SET domain of MLL1 (known for H3K4 monomethylation and dimethylation) remains unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!