Information processing by simple molecular motifs and susceptibility to noise.

J R Soc Interface

Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Biosciences, Imperial College London, South Kensington, London SW7 2AZ, UK Institute of Chemical Biology, Imperial College London, South Kensington, London SW7 2AZ, UK

Published: September 2015

Biological organisms rely on their ability to sense and respond appropriately to their environment. The molecular mechanisms that facilitate these essential processes are however subject to a range of random effects and stochastic processes, which jointly affect the reliability of information transmission between receptors and, for example, the physiological downstream response. Information is mathematically defined in terms of the entropy; and the extent of information flowing across an information channel or signalling system is typically measured by the 'mutual information', or the reduction in the uncertainty about the output once the input signal is known. Here, we quantify how extrinsic and intrinsic noise affects the transmission of simple signals along simple motifs of molecular interaction networks. Even for very simple systems, the effects of the different sources of variability alone and in combination can give rise to bewildering complexity. In particular, extrinsic variability is apt to generate 'apparent' information that can, in extreme cases, mask the actual information that for a single system would flow between the different molecular components making up cellular signalling pathways. We show how this artificial inflation in apparent information arises and how the effects of different types of noise alone and in combination can be understood.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4614471PMC
http://dx.doi.org/10.1098/rsif.2015.0597DOI Listing

Publication Analysis

Top Keywords

processing simple
4
molecular
4
simple molecular
4
molecular motifs
4
motifs susceptibility
4
susceptibility noise
4
noise biological
4
biological organisms
4
organisms rely
4
rely ability
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!