Identification of loci under divergent selection is a key step in understanding the evolutionary process because those loci are responsible for the genetic variations that affect fitness in different environments. Understanding how environmental forces give rise to adaptive genetic variation is a challenge in pest control. Here, we performed an amplified fragment length polymorphism (AFLP) genome scan in populations of the bamboo locust, Ceracris kiangsu, to search for candidate loci that are influenced by selection along an environmental gradient in southern China. In outlier locus detection, loci that demonstrate significantly higher or lower among-population genetic differentiation than expected under neutrality are identified as outliers. We used several outlier detection methods to study the features of C. kiangsu, including method DFDIST, BayeScan, and logistic regression. A total of 97 outlier loci were detected in the C. kiangsu genome with very high statistical supports. Moreover, the results suggested that divergent selection arising from environmental variation has been driven by differences in temperature, precipitation, humidity and sunshine. These findings illustrate that divergent selection and potential local adaptation are prevalent in locusts despite seemingly high levels of gene flow. Thus, we propose that native environments in each population may induce divergent natural selection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4558720 | PMC |
http://dx.doi.org/10.1038/srep13758 | DOI Listing |
Evolution
January 2025
Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-106 91 Stockholm, Sweden.
Genetic differentiation in traits is assumed to frequently occur in response to divergent natural selection. For example, developmental traits might respond to differences in climate. However, little is known about when and at which spatial scales environmental differences lead to genetic differentiation, and to what extent there is genetic differentiation also in trait plasticity.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Sichuan University, West China School of Pharmacy, Renmin Sout Road, 3rd Section, 17#, 610041, Chengdu, CHINA.
Bryostatins are a family of marine natural products that have garnered significant interests, as evidenced by over 40 clinical trials. However, their extremely low natural abundance has severely limited further research. Despite significant efforts, which have led to the total synthesis of seven bryostatin members by eight independent research groups, these complex molecules present persistent challenges for stereocontrolled, large-scale, and especially divergent synthesis.
View Article and Find Full Text PDFFungal Syst Evol
December 2024
Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, USA.
Magic mushrooms are fungi that produce psilocybin, an entheogen with long-term cultural use and a breakthrough compound for treatment of mental health disorders. Fungal populations separated by geography are candidates for allopatric speciation, yet species connectivity typically persists because there is minimal divergence at functional parts of mating compatibility genes. We studied whether connectivity is maintained across populations of a widespread species complex of magic mushrooms that has infiltrated the Northern Hemisphere from a hypothesised centre of origin in Australasia.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Syngenta, Jealott's Hill International Research Centre, Bracknell, UK.
Background: Herbicide cross-resistance is of increasing concern because it compromises the effectiveness of both existing and new chemical options. However, a common misconception is that if a weed population shows dose-response shifts to two herbicides, it is cross-resistant to both. The possibility that individual plants may possess different resistance mechanisms is often overlooked.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
Antarctic environments are dominated by microorganisms, which are vulnerable to viral infection. Although several studies have investigated the phylogenetic repertoire of bacteria and viruses in these poly-extreme environments with freezing temperatures, high ultra violet irradiation levels, low moisture availability and hyper-oligotrophy, the evolutionary mechanisms governing microbial immunity remain poorly understood. Using genome-resolved metagenomics, we test the hypothesis that Antarctic poly-extreme high-latitude microbiomes harbour diverse adaptive immune systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!