Fabricating stable strong basic sites in well-preserved crystallized zeolitic frameworks still remains a difficult issue. Here, we reported a family of MFI-type metallosilicate zeolites, AeS-1 (Ae: alkaline-earth metal ions of Mg, Ca, Sr or Ba; S-1: silicalite-1) through a direct one-pot hydrothermal method involving the acidic co-hydrolysis/condensation of the silica precursor with the Ae salts. Step-by-step full characterizations were designed and conducted for in-depth discussion of the Ae status in AeS-1. Strong basicity (H_≈22.5-26.5) was detected in AeS-1. The basicity was further confirmed by CO2 sorption measurements, (13) C NMR spectra of chloroform-adsorbed samples, and (1) H→(13) C and (1) H→(29) Si cross-polarization magic-angle spinning NMR spectra of ethyl cyanoacetate-adsorbed samples. The results of Knoevenagel condensations demonstrated the excellent solid base catalysis of AeS-1, which showed high activity, reusability, and shape-selectivity, all of which are explained by Ae-derived zeolitic intracrystalline strong basic sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201501894 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Chemistry, University of California, Berkeley, CA 94720.
Combining Deep-UV second harmonic generation spectroscopy with molecular simulations, we confirm and quantify the specific adsorption of guanidinium cations to the air-water interface. Using a Langmuir analysis of measurements at multiple concentrations, we extract the Gibbs free energy of adsorption, finding it larger than typical thermal energies. Molecular simulations clarify the role of polarizability in tuning the thermodynamics of adsorption, and establish the preferential parallel alignment of guanidinium at the air-water interface.
View Article and Find Full Text PDFChemphyschem
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, PS-ISRR, GERMANY.
Two-dimensional layered double hydroxides (LDHs) are ideal candidates for a large number of (bio)catalytic applications due to their flexible composition and easy to tailor properties. Functionality can be achieved by intercalation of amino acids (as the basic units of peptides and proteins). To gain insight on the functionality, we apply resonant inelastic soft x-ray scattering and near edge x-ray absorption fine structure spectroscopy to CaFe LDH in its pristine form as well as intercalated with the amino acids proline and cysteine to probe the electronic structure and its changes upon intercalation.
View Article and Find Full Text PDFLuminescence
January 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China.
Hypochlorous acid (HClO) is released by immune cells in the immune system, and it helps the body fight off infections and inflammation by killing bacteria, viruses, and other pathogens. However, tissue damage or apoptosis may also be induced by excess HClO. On this basis, we designed the probe TPE-NS by choosing tetraphenylethylene (TPE) as the luminescent unit and dimethylthiocarbamoyl chloride as the recognition site.
View Article and Find Full Text PDFBiol Trace Elem Res
January 2025
Clinical Research Centre, University Medical Centre Ljubljana, Zaloška Cesta 2, 1000, Ljubljana, Slovenia.
Premature ovarian insufficiency (POI) is poorly understood, with causes identified in only 25% of cases. Emerging evidence suggests links between trace elements (TEs) and POI. This study is the first to compare concentrations of manganese (Mn), copper (Cu), zinc (Zn), selenium (Se), molybdenum (Mo), arsenic (As), cadmium (Cd), mercury (Hg), and lead (Pb) across urine, serum, and whole blood in women with POI compared to healthy controls (HC), aiming to explore their distribution and potential associations with POI.
View Article and Find Full Text PDFZhong Nan Da Xue Xue Bao Yi Xue Ban
August 2024
Cancer Center, Xiangya Hospital, Central South University, Hunan Key Laboratory of Molecular Radiation Oncology, International Cooperation Base in Science and Technology for Cancer Precision Medicine, National Clinical Research Center for Geriatric Disorders, Changsha 410008.
Immunotherapy has led to groundbreaking advances in anti-tumor treatment, yet significant clinical challenges remain such as the low proportion of beneficiaries and the lack of effective platforms for predicting therapeutic response. Organoid technology provides a novel solution to these issues. Organoids are three-dimensional tissue cultures derived from adult stem cells or pluripotent stem cells that closely replicate the structural and biological characteristics of native organs, demonstrating particularly strong potential in modeling the tumor microenvironment (TME).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!