A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fragmentation-Rearrangement of Peptide Backbones Mediated by the Air Pollutant NO2 (.). | LitMetric

Fragmentation-Rearrangement of Peptide Backbones Mediated by the Air Pollutant NO2 (.).

Chemistry

School of Chemistry, Bio21 Institute, The University of Melbourne, 30 Flemington Road, Parkville, VIC 3010 (Australia).

Published: October 2015

The fragmentation-rearrangement of peptide backbones mediated by nitrogen dioxide, NO2 (.) , was explored using di-, tri-, and tetrapeptides 8-18 as model systems. The reaction, which is initiated through nonradical N-nitrosation of the peptide bond, shortens the peptide chain by the expulsion of one amino acid moiety with simultaneous fusion of the remaining molecular termini through formation of a new peptide bond. The relative rate of the fragmentation-rearrangement depends on the nature of the amino acids and decreases with increasing steric bulk at the α carbon in the order Gly>Ala>Val. Peptides that possessed consecutive aromatic side chains only gave products that resulted from nitrosation of the sterically less congested N-terminal amide. Such backbone fragmentation-rearrangement occurs under physiologically relevant conditions and could be an important reaction pathway for peptides, in which sections without readily oxidizable side chains are exposed to the air pollutant NO2 (.) . In addition to NO2 (.) -induced radical oxidation processes, this outcome shows that ionic reaction pathways, in particular nitrosation, should be factored in when assessing NO2 (.) reactivity in biological systems.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201501850DOI Listing

Publication Analysis

Top Keywords

fragmentation-rearrangement peptide
8
peptide backbones
8
backbones mediated
8
air pollutant
8
pollutant no2
8
peptide bond
8
side chains
8
no2
5
fragmentation-rearrangement
4
mediated air
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!