Protein motion is intimately linked to enzymatic catalysis, yet the stereoelectronic changes that accompany different conformational states of a substrate are poorly defined. Here we investigate the relationship between conformation and stereoelectronic effects of a scissile amide bond. Structural studies have revealed that the C-terminal glycine of ubiquitin and ubiquitin-like proteins adopts a syn (ψ ∼ 0°) or gauche (ψ ∼ ±60°) conformation upon interacting with deubiquitinases/ubiquitin-like proteases. We used hybrid density functional theory and natural bond orbital analysis to understand how the stereoelectronic effects of the scissile bond change as a function of φ and ψ torsion angles. This led to the discovery that when ψ is between 30° and -30° the scissile bond becomes geometrically and electronically deformed. Geometric distortion occurs through pyramidalization of the carbonyl carbon and amide nitrogen. Electronic distortion is manifested by a decrease in the strength of the donor-acceptor interaction between the amide nitrogen and antibonding orbital (π*) of the carbonyl. Concomitant with the reduction in nN → π* delocalization energy, the sp(2) hybrid orbital of the carbonyl carbon becomes richer in p-character, suggesting the syn configuration causes the carbonyl carbon hybrid orbitals to adopt a geometry reminiscent of a tetrahedral-like intermediate. Our work reveals important insights into the role of substrate conformation in activating the reactive carbonyl of a scissile bond. These findings have implications for designing potent active site inhibitors based on the concept of transition state analogues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4820058PMC
http://dx.doi.org/10.1021/acs.biochem.5b00845DOI Listing

Publication Analysis

Top Keywords

scissile bond
16
carbonyl carbon
12
stereoelectronic effects
8
effects scissile
8
amide nitrogen
8
bond
6
scissile
5
carbonyl
5
restricting torsion
4
torsion angle
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!