Insights into the mechanism of the unusual trans-hydrogenation of internal alkynes catalyzed by {Cp*Ru} complexes were gained by para-hydrogen (p-H2 ) induced polarization (PHIP) transfer NMR spectroscopy. It was found that the productive trans-reduction competes with a pathway in which both H atoms of H2 are delivered to a single alkyne C atom of the substrate while the second alkyne C atom is converted into a metal carbene. This "geminal hydrogenation" mode seems unprecedented; it was independently confirmed by the isolation and structural characterization of a ruthenium carbene complex stabilized by secondary inter-ligand interactions. A detailed DFT study shows that the trans alkene and the carbene complex originate from a common metallacyclopropene intermediate. Furthermore, the computational analysis and the PHIP NMR data concur in that the metal carbene is the major gateway to olefin isomerization and over-reduction, which frequently interfere with regular alkyne trans-hydrogenation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4643192 | PMC |
http://dx.doi.org/10.1002/anie.201506075 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
IISER Kolkata: Indian Institute of Science Education and Research Kolkata, Department of Chemical Sciences, Mohanpur, 741246, Nadia, INDIA.
Chiral allyl amines are important structural components in natural products, pharmaceuticals, and chiral catalysts. Herein, we report a cobalt-catalyzed enantioselective reductive coupling of imines with internal alkynes to synthesize chiral allyl amines. The reaction is catalyzed by a cobalt complex derived from commercially available bisphosphine ligand utilizing zinc as the electron donor.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Instituto de Investigaciones Químicas (IIQ), Departamento de Química Inorgánica and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Universidad de Sevilla and Consejo Superior de Investigaciones Científicas (CSIC). Avenida Américo Vespucio 49, 41092 Sevilla, Spain.
Bimetallic complexes have demonstrated a great ability to enhance the activity of monometallic systems for bond activation and catalysis. In this work, we explore the opposite approach: using a second metal to passivate the activity of another by reversible bimetallic inhibition. To do so we have synthesized a family of nine electrophilic gold complexes of formula Au(PR)(NTf) ([NTf] = [N(SOCF)]) that can act as inhibitors in the semihydrogenation of terminal and internal alkynes catalyzed by the iconic iridium Vaska complex IrCl(CO)(PPh).
View Article and Find Full Text PDFJ Org Chem
January 2025
School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
Although the radical hydroboration of alkenes with N-heterocyclic carbene (NHC) borane is well documented, the radical hydroboration of alkynes, especially terminal alkynes, remains challenging. Herein, a photoredox-catalyzed radical -hydroboration of alkynes with NHC borane has been developed, which provided various alkenyl boron compounds in moderate to good yields. This protocol exhibits a broad substrate scope, as both internal and terminal alkynes were compatible.
View Article and Find Full Text PDFChemistry
December 2024
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
Pd-catalyzed alkoxycarbonylation of internal alkynes provides a straightforward access to α,β-disubstituted acrylic esters. Compared with the well-established regioselective alkoxycarbonylation of terminal alkynes, the regioselective hydrocarboxylation of non-functionalized unsymmetric internal alkynes was more challenging owing to the delicate differences of properties between the two substituents. Herein, by using either monophosphine ligand based on 2,3-dihydrobenzo[d][1,3]oxaphosphole motif or bidentate ligand Ph-Phox, the regioselective alkoxycarbonylations of aryl-aryl, aryl-alkyl and alkyl-alkyl disubstituted alkynes were achieved, giving a diversity of trisubstituted α,β-unsaturated carboxylic esters with moderate to excellent yields and high regioselectivity.
View Article and Find Full Text PDFChem Asian J
December 2024
Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India.
We disclosed an efficient protocol for regioselective C6 C-H/N-H activation/annulation reaction of indole-7-carboxamides with alkynes to synthesize highly substituted pyrrolo[3,2-h]isoquinolin-9-one derivatives. Under optimized reaction conditions, electron-deficient and electron-rich internal alkynes reacted efficiently with various indole-7-carboxamides to deliver desired products in good to excellent yields. The synthetic utility of the product is demonstrated by its selective oxidation to the corresponding isatin derivative.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!