Background: The aim of this study was to determine the apoptotic activity of methanol extract of Ashwagandha (MEAG) and in human head and neck squamous cell carcinoma (HNSCC) cells and to investigate the underlying mechanisms.
Methods: We investigated the effects of MEAG on programmed cell death in HNSCC cells using a Live/Dead assay, detection of nuclear morphologic changes, Mitotracker, siRNA knockdown, and RT-PCR.
Results: Treatment with MEAG showed dose-dependent growth-inhibitory activity that attribute to caspase-dependent apoptosis. Loss of mitochondrial membrane potential, release of cytochrome c, and activation of caspase 9 suggested that MEAG leads to activation of mitochondria-mediated apoptosis. MEAG selectively upregulated the expression of Bim protein at the transcriptional level and induced the translocation of Bim into the mitochondria. Knockdown of Bim by siRNA partially blocked MEAG-mediated apoptosis. MEAG also caused an increase in truncated Bid (t-Bid), cleaved caspase-8, and death receptor 5 (DR5). Interestingly, withaferin A (WA), a bioactive component of MEAG, clearly induced apoptosis accompanied by upregulation of Bim, t-Bid, caspase-8, and DR5 similar to the effects of MEAG.
Conclusions: These suggest that MEAG and WA may be potential natural materials for the treatment of HNSCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jop.12353 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
Background: Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury.
View Article and Find Full Text PDFAnn Med
December 2025
Department of Neurology, Peking University First Hospital, China.
Objective: Whereas a few studies have evaluated vestibular involvement in Fabry disease (FD), the relationship between vestibular/oculomotor abnormalities and disease-specific biomarkers remain unclear. Therefore, we seek to evaluate these quantitatively and analyze their relationship with disease phenotype and biomarkers in FD.
Methods: This cohort study enrolled 37 Chinese FD patients registered in our center.
Br J Hosp Med (Lond)
January 2025
Department of Osteoarthritis, Yantai City Yantai Shan Hospital, Yantai, Shandong, China.
Deep venous thrombosis (DVT) represents a significant postoperative complication after artificial femoral head replacement, with the incidence increasing proportionally with patient age. This study aimed to evaluate the effect of early postoperative use of intermittent pneumatic compression devices (IPC), followed by the combined use of low molecular weight heparin (LMWH) after 48 hours, for the prevention of postoperative lower limb DVT in elderly patients undergoing hip arthroplasty. The retrospective study included 100 elderly patients who underwent unilateral femoral head replacement.
View Article and Find Full Text PDFJ Integr Neurosci
January 2025
Department of Hepatology, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170 Porto Alegre, Rio Grande do Sul (RS), Brazil.
Mitochondria are organelles of eukaryotic cells delimited by two membranes and cristae that consume oxygen to produce adenosine triphosphate (ATP), and are involved in the synthesis of vital metabolites, calcium homeostasis, and cell death mechanisms. Strikingly, normal mitochondria function as an integration center between multiple conditions that determine neural cell homeostasis, whereas lesions that lead to mitochondrial dysfunction can desynchronize cellular functions, thus contributing to the pathophysiology of traumatic brain injury (TBI). In addition, TBI leads to impaired coupling of the mitochondrial electron transport system with oxidative phosphorylation that provides most of the energy needed to maintain vital functions, ionic homeostasis, and membrane potentials.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!