A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Exploration of CO2-Philicity of Poly(vinyl acetate-co-alkyl vinyl ether) through Molecular Modeling and Dissolution Behavior Measurement. | LitMetric

Exploration of CO2-Philicity of Poly(vinyl acetate-co-alkyl vinyl ether) through Molecular Modeling and Dissolution Behavior Measurement.

J Phys Chem B

State Key Laboratory of Chemical Engineering, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.

Published: September 2015

Hydrocarbon CO2-philes are of great interest for use in expanding CO2 applications as a green solvent. In this work, multiscale molecular modeling and dissolution behavior measurement were both applied to explore CO2-philicity of the poly(vinyl acetate) (PVAc)-based copolymer. Introduction of a favorable comonomer, i.e., vinyl ethyl ether (VEE), could significantly reduce the polymer-polymer interaction on the premise that the polymer-CO2 interaction was not weakened but enhanced. The ab initio calculated interaction of the model molecules with CO2 demonstrated that the ether group in VEE or VBE was the suitable CO2-philic segment. From the molecular dynamics (MD) simulations of polymer/CO2 systems, the interaction energy and Flory-Huggins parameter (χ12) of poly(VAc-alt-VEE)/CO2 supported that poly(VAc-alt-VEE) possessed better CO2-philicity than PVAc. The dissolution behaviors of the synthesized poly(VAc-co-alkyl vinyl ether) copolymers in CO2 showed the best CO2-phile had the VEE content of about 34 mol %. The MD simulations also indicated that the interaction of random poly(VAc-co-VEE) containing about 30 mol % VEE with CO2 was the strongest and the χ12 was the smallest in these polymer/CO2 systems. Not only could the VEE monomer reduce the polymer-polymer interaction, but it could also enhance the polymer-CO2 interaction with an optimized composition. Introducing a suitable comonomer with a certain composition might be a promising strategy to form the synergistic effect of polymer-polymer interaction and polymer-CO2 interaction for screening the hydrocarbon CO2-philes.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpcb.5b08393DOI Listing

Publication Analysis

Top Keywords

polymer-polymer interaction
12
polymer-co2 interaction
12
interaction
9
co2-philicity polyvinyl
8
vinyl ether
8
molecular modeling
8
modeling dissolution
8
dissolution behavior
8
behavior measurement
8
hydrocarbon co2-philes
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!