Human 15-lipoxygenase-1 (h-15-LOX-1) is a mammalian lipoxygenase and plays an important role in several inflammatory lung diseases such as asthma, COPD, and chronic bronchitis. Novel potent inhibitors of h-15-LOX-1 are required to explore the role of this enzyme further and to enable drug discovery efforts. In this study, we applied an approach in which we screened a fragment collection that is focused on a diverse substitution pattern of nitrogen-containing heterocycles such as indoles, quinolones, pyrazoles, and others. We denoted this approach substitution-oriented fragment screening (SOS) because it focuses on the identification of novel substitution patterns rather than on novel scaffolds. This approach enabled the identification of hits with good potency and clear structure-activity relationships (SAR) for h-1-5-LOX-1 inhibition. Molecular modeling enabled the rationalization of the observed SAR and supported structure-based design for further optimization to obtain inhibitor 14 d that binds with a Ki of 36 nM to the enzyme. In vitro and ex vivo biological evaluations of our best inhibitor demonstrate a significant increase of interleukin-10 (IL-10) gene expression, which indicates its anti-inflammatory properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4872822 | PMC |
http://dx.doi.org/10.1021/acs.jmedchem.5b01121 | DOI Listing |
Adv Sci (Weinh)
January 2025
Department for Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany.
Studying the molecular basis of intestinal infections caused by enteric pathogens at the tissue level is challenging, because most human intestinal infection models have limitations, and results obtained from animals may not reflect the human situation. Infections with Salmonella enterica serovar Typhimurium (STm) have different outcomes between organisms. 3D tissue modeling of primary human material provides alternatives to animal experimentation, but epithelial co-culture with immune cells remains difficult.
View Article and Find Full Text PDFFood Funct
January 2025
Nutrition Innovation Centre for Food and Health (NICHE), Ulster University, Coleraine, UK.
Impairment of gut barrier integrity is associated with the pathogenesis of gastrointestinal diseases, including inflammatory bowel disease, colorectal cancer, and coeliac disease. While many aspects of diet have been linked to improved barrier function, (poly)phenols, a broad group of bioactive phytochemicals, are of potential interest. The (poly)phenolic sub-class, flavan-3-ols, have been investigated in some detail owing to their abundance in commonly consumed foods, including grapes, tea, apples, cocoa, berries, and nuts.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.
Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.
View Article and Find Full Text PDFSex Med
December 2024
Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark.
Background: Peyronie's disease (PD) is a fibrotic disorder affecting the penile tunica albugínea, with unclear pathophysiology despite centuries of recognition.
Aim: This scoping review maps the effects of interventions in basic PD research, synthesizing evidence from in vivo and in vitro studies to guide future investigation.
Methods: In October-November 2023, a systematic search was conducted across PubMed, Embase (Ovid), Science of Web, and Scopus, following SRYCLE's guidelines.
Acta Pharm Sin B
December 2024
School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!