IGF-1 in Friedreich's Ataxia - proof-of-concept trial.

Cerebellum Ataxias

Reference Unit of Hereditary Ataxias and Paraplegias, Department of Neurology, IdiPAZ, Hospital Universitario La Paz, 28046 Madrid, Spain.

Published: September 2015

Background: Friedreich's ataxia is an autosomal recessive, severely incapacitating disorder. There is little objective evidence regarding FRDA management. Abnormalities in the insulin/insulin-like growth factor 1 (IGF-1) system (IIS) signalling pathway were thought to play a role in the physiopathological processes of various neurodegenerative disorders, including spinocerebellar ataxias. The objective of the study was to test the safety, tolerability, and efficacy of therapy with IGF-1 in Friedreich's ataxia (FRDA) patients in a clinical pilot study.

Results: A total of 4 females and 1 male were included in the study; 23 to 36 years of age (average 26.6 ± 5.4), diagnosed with FRDA with normal ventricular function. Patients were treated with IGF-1 therapy with 50 μg/kg twice a day subcutaneously for 12 months. The efficacy of this therapy was assessed by changes from baseline on the scale for the assessment and rating of ataxia, (SARA) and by changes from baseline in echocardiogram parameters. The annual worsening rate (AWR) was estimated in this series as a SARA score of -0.4 ± 0.83 (CI 95%: -1.28 to 0.48) SARA score, whereas the AWR for our FRDA cohort was estimated as a SARA score of 2.05 ± 1.23 (CI 95%: 1.58 to 2.52). Echocardiographic parameters remained normal and stable.

Conclusion: Our results seem to indicate a benefit of this IGF-1 therapy to neurological functions in FRDA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4552279PMC
http://dx.doi.org/10.1186/2053-8871-1-10DOI Listing

Publication Analysis

Top Keywords

friedreich's ataxia
12
sara score
12
igf-1 friedreich's
8
efficacy therapy
8
igf-1 therapy
8
changes baseline
8
igf-1
5
frda
5
ataxia
4
ataxia proof-of-concept
4

Similar Publications

Poincaré plot analysis of ECG uncovers beneficial effects of omaveloxolone in a mouse model of Friedreich's ataxia.

Heart Rhythm

January 2025

Department of Molecular Biosciences, University of California, Davis, CA, USA; Department of Basic Sciences, California Northstate University, Elk Grove, CA. Electronic address:

Background: Friedreich's ataxia (FA) is a rare inherited neuromuscular disorder, where most patients die from lethal cardiomyopathy and arrhythmias. Mechanisms leading to arrhythmic events in FA patients are poorly understood.

Objective: This study aims to examine cardiac electrical signal propagation in mouse model of FA with severe cardiomyopathy and evaluate effects of omaveloxolone (OMAV), the first FDA-approved therapy.

View Article and Find Full Text PDF

Introduction: Friedreich Ataxia (FA) is a multisystem neurodegenerative disease. Affected individuals rely on mobility assistive technologies (MAT) (e.g.

View Article and Find Full Text PDF

Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review.

Orphanet J Rare Dis

December 2024

Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.

Background: Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions.

View Article and Find Full Text PDF

Harsh acid oxidation of activated charcoal transforms an insoluble carbon-rich source into water-soluble, disc structures of graphene decorated with multiple oxygen-containing functionalities. We term these pleiotropic nano-enzymes as "pleozymes". A broad redox potential spans many crucial redox reactions including the oxidation of hydrogen sulfide (HS) to polysulfides and thiosulfate, dismutation of the superoxide radical (O*), and oxidation of NADH to NAD.

View Article and Find Full Text PDF

Background And Objectives: Friedreich's Ataxia (FRDA) is a genetic disease that affects a variety of different tissues. The disease is caused by a mutation in the gene ( which is important for the synthesis of iron-sulfur clusters. The primary pathologies of FRDA are loss of motor control and cardiomyopathy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!