Background: The ongoing progress of continuous glucose monitoring (CGM) systems results in an increasing interest in comparing their performance, in particular in terms of accuracy, that is, matching CGM readings with reference values measured at the same time. Most often accuracy is evaluated by the mean absolute relative difference (MARD). It is frequently overseen that MARD does not only reflect accuracy, but also the study protocol and evaluation procedure, making a cross-study comparison problematic.
Methods: We evaluate the effect of several factors on the MARD statistical properties: number of paired reference and CGM values, distribution of the paired values, accuracy of the reference measurement device itself and the time delay between data pairs. All analysis is done using clinical data from 12 patients wearing 6 sensors each.
Results: We have found that a few paired points can have a potentially high impact on MARD. Leaving out those points for evaluation thus reduces the MARD. Similarly, accuracy of the reference measurements greatly affects the MARD as numerical and graphical data show. Results also show that a log-normal distribution of the paired references provides a significantly different MARD than, for example, a uniform distribution.
Conclusions: MARD is a reasonable parameter to characterize the performance of CGM systems when keeping its limitations in mind. To support clinicians and patients in selecting which CGM system to use in a clinical setting, care should be taken to make MARD more comparable by employing a standardized evaluation procedure.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667347 | PMC |
http://dx.doi.org/10.1177/1932296815586013 | DOI Listing |
Diabetes Technol Ther
January 2025
Senseonics, Incorporated, Germantown, Maryland, USA.
The implanted Eversense Continuous Glucose Monitoring (CGM) System transitioned from 90- to 180- to 365-day durations marketed today. This report summarizes the 365-day clinical study. ENHANCE was a prospective, multicenter study evaluating the accuracy and safety of the Eversense 365 CGM system through 1 year in adults with diabetes.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Clinical Center for Diabetes, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai, China.
Aims: Currently, there is a lack of evidence regarding time in tight range (TITR) and long-term adverse outcomes. We aimed to investigate the association between TITR and the risk of all-cause and cardiovascular mortality among patients with type 2 diabetes.
Materials And Methods: A total of 6061 patients with type 2 diabetes were prospectively recruited in a single centre.
JCEM Case Rep
February 2025
Division of Endocrinology, Diabetes & Metabolic Diseases, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA.
Insulinomas are rare neuroendocrine neoplasms and causes of hypoglycemia. They present with neuroglycopenic symptoms, including confusion and seizures. Suspected diagnosis must be confirmed through bloodwork and imaging.
View Article and Find Full Text PDFBackground: The use of automated insulin delivery (AID) devices is now widespread in the management of type 1 diabetes (T1D), being used for younger and older children, adolescents and adults. The integration of insulin pumps with continuous glucose monitors (CGM) and smart management software in AID systems has significantly improved glycemic management compared to the separate application of each diabetes technology. The efficacy of AID systems has been demonstrated in randomized controlled trials (RCTs) but it is their application in real-world studies that fully demonstrates their impact for people with T1D.
View Article and Find Full Text PDFBMJ Open Diabetes Res Care
January 2025
Diabetes and Endocrinology, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
Introduction: The UK national pediatric diabetes audit reports higher HbA1c for children and young people (CYP) with type 1 diabetes (T1D) of Black ethnicity compared with White counterparts. This is presumably related to higher mean blood glucose (MBG) due to lower socioeconomic status (SES) and less access to technology. We aimed to determine if HbA1c ethnic disparity persists after accounting for the above variables.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!