A separation-oriented derivatization method combined with LC has been developed for the selective analysis of biogenic and related compounds. In this method, we utilized a specific affinity between perfluoroalkyl-containing compounds, i.e., 'fluorous' compounds (fluorophilicity). Our strategy involves the derivatization of target analytes with perfluoroalkyl reagents, followed by selective retention of the derivatives with a perfluoroalkyl-modified stationary phase LC column. The perfluoroalkylated derivatives are strongly retained on the column owing to their fluorophilicity, whereas non-derivatized species, such as sample matrices, are hardly retained. Therefore, utilizing this derivatization method, target analytes can be determined selectively without interference from matrices. This method has been successfully applied to the LC analysis of some biogenic and related compounds in complex biological samples.

Download full-text PDF

Source
http://dx.doi.org/10.1248/yakushi.15-00116DOI Listing

Publication Analysis

Top Keywords

biogenic compounds
12
selective analysis
8
derivatization method
8
analysis biogenic
8
target analytes
8
method
5
compounds
5
[development selective
4
analysis method
4
method biogenic
4

Similar Publications

It is required to have a more straightforward and easier way to check the quality of food to ensure the safety of the public heaths. The decomposition of meat protein results in ammonia and biogenic amines (BAs).  Here, we have designed and synthesized three luminescent-based probe molecules, which originated from 2-(2-hydroxyphenyl) benzothiazole (HBT) derivatives and showed the excited state-induced proton transfer (ESIPT) phenomenon.

View Article and Find Full Text PDF

Dicarboxylic acids (DCAs), with their deliquescence and hygroscopic nature, can function as cloud condensation nuclei (CCN) and ice nuclei (IN), affecting rainfall patterns. DCA analysis can serve as organic molecular markers for anthropogenic and biogenic sources. Very few studies deal with the optimization of the protocol for qualitative and quantitative analysis of DCAs using gas chromatography-mass spectrometry (GC-MS).

View Article and Find Full Text PDF

Iron oxide nanoparticles, recognized for their superparamagnetic properties, are promising for future healthcare therapies. However, their extensive use in medicine and electronics contributes to their discharge into our environments, highlighting the need for further research on their cellular damage effects on aquatic organisms. While the detrimental properties of other compounds have been stated in the early-life stages of fish, the cytotoxic consequences of superparamagnetic iron oxide nanoparticles (SPIONs) in these stages are still unexplored.

View Article and Find Full Text PDF

The Amazon forest is the largest source of isoprene emissions, and the seasonal pattern of leaf-out phenology in this forest has been indicated as an important driver of seasonal variation in emissions. Still, it is unclear how emissions vary between different leaf phenological types in this forest. To evaluate the influence of leaf phenological type over isoprene emissions, we measured leaf-level isoprene emission capacity and leaf functional traits for 175 trees from 124 species of angiosperms distributed among brevideciduous and evergreen trees in a central Amazon forest.

View Article and Find Full Text PDF

We report the application of organoiridium complexes as catalytic agents for the detoxification of biogenic reactive aldehyde species (RASP), which are implicated in the pathogenesis of neurodegenerative disorders. We show that Ir complexes functionalized with phosphonium cations localize selectively in the mitochondria and have better cellular retention compared to that of their parent Ir species. In a cell model for Parkinsonism, the mitochondria-targeted iridium catalysts exhibited superior cell protecting abilities and longer-lasting effects (up to 6 d) than conventional RASP scavengers, which failed to be effective beyond 24 h.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!