Aim: The aim of this study was to evaluate the effect of chlorhexidine and ethanol application on the push-out bond strength and bond durability of fiber posts cemented with an etch-and-rinse adhesive system/resin cement to intraradicular dentin.

Materials And Methods: Fifty-four bovine roots were shaped for the cementation of a fiberglass post and received the application of 37% phosphoric acid. They were then randomly divided into three groups, according to the type of dentin treatment (n = 18) performed: no treatment (control group), 100% ethanol, or 2% chlorhexidine. Next, the adhesive system (Adper Scotch Bond Multipurpose Plus, 3M ESPE) was applied to the dentin, according to the manufacturer's instructions. Glass fiber posts were cemented with dual resin cement (Rely X ARC, 3M ESPE). After 48 hours, the specimens were serially sectioned for push-out test analysis, providing two slices from each root third (cervical, medium and apical), one of which was tested immediately and the other stored in distilled water for 180 days. The data were analyzed with three-way analysis of variance (ANOVA) for repeated measures and Tukey's test at a 5% significance level.

Results: Intraradicular treatment with chlorhexidine yielded the highest bond strength means, followed by ethanol treatment. The control group presented the lowest bond strength means. Water storage exerted no effect on bond strength values.

Conclusion: Both chlorhexidine and ethanol improved push-out bond strength to intraradicular dentin, with the former providing the best results, regardless of the storage time.

Clinical Significance: The application of 2% chlorhexidine or 100% ethanol may be an important step that can be taken to enhance bond strength of fiber posts to intraradicular dentin, when dual resin cements are used.

Download full-text PDF

Source
http://dx.doi.org/10.5005/jp-journals-10024-1720DOI Listing

Publication Analysis

Top Keywords

bond strength
28
fiber posts
16
chlorhexidine ethanol
12
push-out bond
12
bond
9
ethanol application
8
strength fiber
8
posts cemented
8
treatment control
8
control group
8

Similar Publications

BACKGROUND Indirect ceramic restorations often need multiple firings to match the shade of natural teeth or need after-correction and ceramic addition during the clinical trial stage. Many studies have examined how multiple firings affect the mechanical characteristics of zirconia-veneered prostheses. The effect of firing number on adhesion between these core and heat-pressed lithium disilicate veneering ceramics is unclear.

View Article and Find Full Text PDF

This study aimed to compare the bonding efficacy three bioactive self-adhesive restorative systems to dentin. A total of 80 permanent human molars were utilized in this study. The occlusal enamel was removed to exposed mid-coronal dentin; 40 molars were used for microshear bond strength testing, while the remaining molars were used for micromorphological analysis of restoration/dentin interface.

View Article and Find Full Text PDF

This study investigates camel milk protein structural dynamics during digestion using Fourier Transform Infrared (FTIR) spectroscopy and Two-Dimensional Infrared (2D-IR) homo-correlation and hetero-correlation analysis. The synchronous 2DIR homo-correlation map reveals that NH bending and C-N stretching vibrations (amide II) are sensitive to digestion, indicating significant impacts on secondary structures. The asynchronous 2DIR homo-correlation indicates a stepwise process, where initial disruptions in NH interactions precede changes in CO stretching vibrations (amide I), highlighting the sequence of structural alterations during protein unfolding and degradation.

View Article and Find Full Text PDF

Why does silicon have an indirect band gap?

Mater Horiz

January 2025

Department of Materials Science, University of Michigan, Ann Arbor, Michigan 48109, USA.

It is difficult to intuit how electronic structure features-such as band gap magnitude, location of band extrema, effective masses, -arise from the underlying crystal chemistry of a material. Here we present a strategy to distill sparse and chemically-interpretable tight-binding models from density functional theory calculations, enabling us to interpret how multiple orbital interactions in a 3D crystal conspire to shape the overall band structure. Applying this process to silicon, we show that its indirect gap arises from a competition between first and second nearest-neighbor bonds-where second nearest-neighbor interactions pull the conduction band down from Γ to X in a cosine shape, but the first nearest-neighbor bonds push the band up near X, resulting in the characteristic dip of the silicon conduction band.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!