AI Article Synopsis

Article Abstract

We have integrated mass-produced commercial complementary metal-oxide-semiconductor (CMOS) image sensors and off-the-shelf single-board computers into an x-ray camera platform optimized for acquisition of x-ray spectra and radiographs at energies of 2-6 keV. The CMOS sensor and single-board computer are complemented by custom mounting and interface hardware that can be easily acquired from rapid prototyping services. For single-pixel detection events, i.e., events where the deposited energy from one photon is substantially localized in a single pixel, we establish ∼20% quantum efficiency at 2.6 keV with ∼190 eV resolution and a 100 kHz maximum detection rate. The detector platform's useful intrinsic energy resolution, 5-μm pixel size, ease of use, and obvious potential for parallelization make it a promising candidate for many applications at synchrotron facilities, in laser-heating plasma physics studies, and in laboratory-based x-ray spectrometry.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4929713DOI Listing

Publication Analysis

Top Keywords

x-ray camera
8
complementary metal-oxide-semiconductor
8
single-board computers
8
note disposable
4
x-ray
4
disposable x-ray
4
camera based
4
based mass
4
mass produced
4
produced complementary
4

Similar Publications

Spinal dural arteriovenous fistulas (sDAVFs) are rather uncommon lesions of the spine. In sDAVFs, which represent the most frequent form of vascular malformations of the spine, operative treatment remains the most common treatment modality. In operative surgery, visualization and pathology detection have a key impact on the results of the neurosurgical treatment of an sDAVF.

View Article and Find Full Text PDF

Food safety is gaining increasing attention worldwide. Currently, low-density organic foreign objects such as insects are extremely challenging to detect using conventional metal detectors and X-ray inspection systems. This study aimed to develop a visible-near-infrared single-pixel imaging (Vis-NIR-SPI) method to detect small insects inside food.

View Article and Find Full Text PDF

Hyperspectral imaging (HSI) technology, which offers both spatial and spectral information, holds significant potential for enhancing diagnostic performance during endoscopy and other medical procedures. However, quantitative evaluation of HSI cameras is challenging due to various influencing factors (e.g.

View Article and Find Full Text PDF

AI-based automatic patient positioning in a digital-BGO PET/CT scanner: efficacy and impact.

EJNMMI Phys

January 2025

Department of Nuclear Medicine, Rambam Health Care Campus, P.O.B. 9602, 3109601, Haifa, Israel.

Background: A recently released digital solid-state positron emission tomography/x-ray CT (PET/CT) scanner with bismuth germanate (BGO) scintillators provides an artificial intelligence (AI) based system for automatic patient positioning. The efficacy of this digital-BGO system in patient placement at the isocenter and its impact on image quality and radiation exposure was evaluated.

Method: The digital-BGO PET/CT with AI-based auto-positioning was compared (χ, Mann-Whitney tests) to a solid-state lutetium-yttrium oxyorthosilicate (digital-LYSO) PET/CT with manual patient positioning (n = 432 and 343 studies each, respectively), with results split into groups before and after the date of a recalibration of the digital-BGO auto-positioning camera.

View Article and Find Full Text PDF

The development of optical sensors for label-free quantification of cell parameters has numerous uses in the biomedical arena. However, using current optical probes requires the laborious collection of sufficiently large datasets that can be used to calibrate optical probe signals to true metabolite concentrations. Further, most practitioners find it difficult to confidently adapt black box chemometric models that are difficult to troubleshoot in high-stakes applications such as biopharmaceutical manufacturing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!