The combination of ultrafast optical excitation and time-resolved synchrotron x-ray nanodiffraction provides unique insight into the photoinduced dynamics of materials, with the spatial resolution required to probe individual nanostructures or small volumes within heterogeneous materials. Optically excited x-ray nanobeam experiments are challenging because the high total optical power required for experimentally relevant optical fluences leads to mechanical instability due to heating. For a given fluence, tightly focusing the optical excitation reduces the average optical power by more than three orders of magnitude and thus ensures sufficient thermal stability for x-ray nanobeam studies. Delivering optical pulses via a scannable fiber-coupled optical objective provides a well-defined excitation geometry during rotation and translation of the sample and allows the selective excitation of isolated areas within the sample. Experimental studies of the photoinduced lattice dynamics of a 35 nm BiFeO3 thin film on a SrTiO3 substrate demonstrate the potential to excite and probe nanoscale volumes.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4929436DOI Listing

Publication Analysis

Top Keywords

synchrotron x-ray
8
x-ray nanodiffraction
8
optical excitation
8
x-ray nanobeam
8
optical power
8
optical
7
spatially confined
4
confined low-power
4
low-power optically
4
optically pumped
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!