Purpose: For a given bowtie filter design, both the selection of material and the physical design control the energy fluence, and consequently the dose distribution, in the object. Using three previously described bowtie filter designs, the goal of this work is to demonstrate the effect that different materials have on the bowtie filter performance measures.
Methods: Three bowtie filter designs that compensate for one or more aspects of the beam-modifying effects due to the differences in path length in a projection have been designed. The nature of the designs allows for their realization using a variety of materials. The designs were based on a phantom, 14 cm in diameter, composed of 40% fibroglandular and 60% adipose tissue. Bowtie design #1 is based on single material spectral matching and produces nearly uniform spectral shape for radiation incident upon the detector. Bowtie design #2 uses the idea of basis-material decomposition to produce the same spectral shape and intensity at the detector, using two different materials. With bowtie design #3, it is possible to eliminate the beam hardening effect in the reconstructed image by adjusting the bowtie filter thickness so that the effective attenuation coefficient for every ray is the same. Seven different materials were chosen to represent a range of chemical compositions and densities. After calculation of construction parameters for each bowtie filter design, a bowtie filter was created using each of these materials (assuming reasonable construction parameters were obtained), resulting in a total of 26 bowtie filters modeled analytically and in the penelope Monte Carlo simulation environment. Using the analytical model of each bowtie filter, design profiles were obtained and energy fluence as a function of fan-angle was calculated. Projection images with and without each bowtie filter design were also generated using penelope and reconstructed using FBP. Parameters such as dose distribution, noise uniformity, and scatter were investigated.
Results: Analytical calculations with and without each bowtie filter show that some materials for a given design produce bowtie filters that are too large for implementation in breast CT scanners or too small to accurately manufacture. Results also demonstrate the ability to manipulate the energy fluence distribution (dynamic range) by using different materials, or different combinations of materials, for a given bowtie filter design. This feature is especially advantageous when using photon counting detector technology. Monte Carlo simulation results from penelope show that all studied material choices for bowtie design #2 achieve nearly uniform dose distribution, noise uniformity index less than 5%, and nearly uniform scatter-to-primary ratio. These same features can also be obtained using certain materials with bowtie designs #1 and #3.
Conclusions: With the three bowtie filter designs used in this work, the selection of material is an important design consideration. An appropriate material choice can improve image quality, dose uniformity, and dynamic range.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1118/1.4928476 | DOI Listing |
Braz J Microbiol
January 2025
Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, 05508-900, Brazil.
Despite meticulous precautions, contamination of genomic DNA samples is not uncommon, which can significantly compromise the analysis of microorganisms' whole-genome sequencing data, thus affecting all subsequent analyses. Thanks to advancements in software and bioinformatics techniques, it is now possible to address this issue and prevent the loss of the entire dataset obtained in a contaminated whole-genome sequencing, where the DNA of another bacterium is present. In this study, it was observed that the sequencing reads from Streptomyces sp.
View Article and Find Full Text PDFSci Rep
November 2024
School of Information Science and Engineering, Engineering Research Center for Metallurgical Automation and Detecting Technology Ministry of Education, Wuhan University of Science and Technology, Wuhan, 430081, P. R. China.
In this paper, a novel compact bandpass filter (BPF) with a wide out-of-band rejection is proposed. It can achieve broadband characteristics by combining hollow bowtie-type spoof surface plasmon polaritons (SSPPs) with complementary H-type defected grounded structures (DGSs) through aperture coupling. Compared with the conventional SSPP unit cells, the hollow bowtie-type structure exhibits much better slow-wave characteristics.
View Article and Find Full Text PDFPhys Med
November 2024
Department of Human Structure and Repair, Ghent University, Proeftuinstraat 86 - Building N7, 9000 Ghent, Belgium. Electronic address:
Purpose: For patient-specific CT dosimetry, Monte Carlo dose simulations require an accurate description of the CT scanner. However, quantitative spectral information and information on the bowtie filter material and shape from the manufacturer is often not available. In this study, the influence of different X-ray spectra and bowtie filter characterisation methods on simulated CT organ doses is studied.
View Article and Find Full Text PDFPhys Med Biol
October 2024
Research Center for Advanced Detection Materials and Medical Imaging Devices, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China.
The aim of this study was to investigate the impact of the bowtie filter on the image quality of the photon-counting detector (PCD) based CT imaging.Numerical simulations were conducted to investigate the impact of bowtie filters on image uniformity using two water phantoms, with tube potentials ranging from 60 to 140 kVp with a step of 5 kVp. Subsequently, benchtop PCD-CT imaging experiments were performed to verify the observations from the numerical simulations.
View Article and Find Full Text PDFRadiography (Lond)
October 2024
Research and Development Imaging Support Unit, Nottingham University Hospitals NHS Trust, Nottingham, UK. Electronic address:
Introduction: Computed Tomography (CT) chest, abdomen and pelvis research demonstrates a relationship between vertical phantom positioning and radiation dose. Moving the phantom closer or further from the x-ray source results in magnification or minimisation of the localiser. As automatic tube current modulation (ATCM) algorithms use localisers to estimate patient size and calculate required tube current, magnification or minimisation results in the incorrect provision of radiation dose.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!