Surface plasmon (SP)-enhanced ultraviolet and visible photocatalytic activities of SrTiO3 (STO) are observed after incorporating Ag nanoparticles (Ag-NPs) on STO surfaces. A two-step excitation model is proposed to explain the SP-enhanced photocatalysis. The point of the model is that an electron at the valence band of STO is first excited onto the Fermi level of Ag-NP by the SP field generated on the Ag-NP, and then injected into the conduction band of STO from the SP band, leaving a hole at the valence band of STO. A full redox catalytic reaction at the surface of STO is then available. For Ag-NP incorporated STO, up-converted and inter-band photoluminescence emissions of STO are observed, and nonlinear evolutions of photocatalytic activity with illumination light powers are found. Furthermore, near infrared photocatalysis is detected. These results support the proposed model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.4929910 | DOI Listing |
ACS Nano
December 2024
Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea.
Photodetectors that detect near-infrared (NIR) light serve as important components in contemporary energy-efficient optoelectronic devices. However, detecting the low-energy photons of the NIR light has long been challenging since the ease of photoexcitation inevitably involves increasing the background current in the dark. Herein, we report the atomic-scale interface modification in SrRuO/LaAlO/Nb-doped SrTiO (SRO/LAO/Nb:STO) heterostructures for NIR photodetection.
View Article and Find Full Text PDFNanotechnology
December 2024
Horia Hulubei National Institute of Physics and Nuclear Engineering, Magurele 77126, Ilfov, Romania.
J Phys Chem Lett
October 2024
College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, PR China.
Using time-dependent density functional theory and nonadiabatic molecular dynamics, we systematically investigated the effect of A-site doping on the CO activation and charge carrier lifetimes in SrTiO(STO). Our simulations revealed that A-site doping significantly enhances the chemical adsorption of CO on SrTiO surfaces, which is beneficial for promoting CO activation. Moreover, we found that A-site doping can efficiently stabilize the lowest unoccupied molecular orbital (LUMO) of CO near the conduction band minimum of STO, promoting the photogenerated electron transfer from the conduction band of STO to the CO LUMO.
View Article and Find Full Text PDFACS Nano
October 2024
Shanghai Key Laboratory of High Temperature Superconductors, Department of Physics, Shanghai University, Shanghai 200444, China.
The interaction of atomic orbitals at the interface of perovskite oxide heterostructures has been investigated for its profound impact on the band structures and electronic properties, giving rise to unique electronic states and a variety of tunable functionalities. In this study, we conducted an extensive investigation of the optical and electronic properties of epitaxial NdNiO synthesized on a series of single-crystal substrates. Unlike nanofilms synthesized on other substrates, NdNiO on SrTiO (NNO/STO) gives rise to a unique band structure featuring an additional unoccupied band situated above the Fermi level.
View Article and Find Full Text PDFSmall
November 2024
Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, 650091, P. R. China.
In order to enhance the overall efficiency of colloidal quantum dots solar cells, it is crucial to suppress the recombination of charge carriers and minimize energy loss at the interfaces between the transparent electrode, electron transport layer (ETL), and colloidal quantum dots (CQDs) light-absorbing material. In the current study, ZnO/SrTiO (STO), ZnO/WO (TO), and ZnO/ZnSnO (ZTO) bilayers are introduced as an ETL using a spin-coating technique. The ZTO interlayer exhibits a smoother surface with a root-mean-square (RMS) value of ≈ 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!