On the field-induced switching of molecular organization in a biaxial nematic cell and its relaxation.

J Chem Phys

Department of Industrial Chemistry "Toso Montanari, " University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy.

Published: August 2015

We investigate the switching of a biaxial nematic filling a flat cell with planar homogeneous anchoring using a coarse-grained molecular dynamics simulation. We have found that an aligning field applied across the film, and acting on specific molecular axes, can drive the reorientation of the secondary biaxial director up to one order of magnitude faster than that for the principal director. While the π/2 switching of the secondary director does not affect the alignment of the long molecular axes, the field-driven reorientation of the principal director proceeds via a concerted rotation of the long and transversal molecular axes. More importantly, while upon switching off a (relatively) weak or intermediate field, the biaxial nematic liquid crystal is always able to relax to the initial surface aligned director state; this is not the case when using fields above a certain threshold. In that case, while the secondary director always recovers the initial state, the principal one remains, occasionally, trapped in a nonuniform director state due to the formation of domain walls.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4928522DOI Listing

Publication Analysis

Top Keywords

biaxial nematic
12
molecular axes
12
principal director
8
secondary director
8
director state
8
director
7
molecular
5
field-induced switching
4
switching molecular
4
molecular organization
4

Similar Publications

As the temperature decreases, rigid anisotropic molecules that usually incorporate polar groups, aromatic rings or multiple bonds, orient along a common direction, eventually forming liquid-crystalline phases under specific thermodynamic conditions. This study explores the phase behavior and dynamics of board-shaped mesogens with a 1,4,5,8-tetraphenyl-anthraquinone core and four lateral arms forming an oligo(phenyleneethynylene) scaffold. These molecules are promising candidates for forming the elusive biaxial nematic phase.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the behavior of nonspherical particles, particularly elongated ones, in shear flow, building on the historical work of Jeffery which described their motion.
  • It employs Langevin simulations and the Fokker-Planck equation to analyze how these particles respond to noise and calculates key parameters that represent their ordering behaviors, such as nematic ordering and biaxiality.
  • The research finds that as noise decreases or Péclet number increases, nematic order improves, while biaxiality peaks at a certain value, and it also reveals that particles in 3D rotate faster than in 2D under the same noise conditions.
View Article and Find Full Text PDF

Biaxial nematic liquid crystals are fascinating systems sometimes referred to as the Higgs boson of soft matter because of experimental observation challenges. Here we describe unexpected states of matter that feature biaxial orientational order of colloidal supercritical fluids and gases formed by sparse rodlike particles. Colloidal rods with perpendicular surface boundary conditions exhibit a strong biaxial symmetry breaking when doped into conventional chiral nematic fluids.

View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) exhibit unique mechanical properties of soft elasticity and reversible shape-changing behaviors, and so serve as potentially transformative materials for various protective and actuation applications. This study contributes to filling a critical knowledge gap in the field by investigating the microscale mesogen organization of nematic LCEs with diverse macroscopic deformation. A polarized Fourier transform infrared light spectroscopy (FTIR) tester is utilized to examine the mesogen organizations, including both the nematic director and mesogen order parameter.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the phase behavior of twisted convex prisms (with shapes defined by specific geometries) utilizing Monte Carlo simulations for prisms of dimensions 3 and 4.
  • Strong twisting of these prisms prevents biaxial phases from forming and instead stabilizes uniaxial nematic and smectic phases.
  • The research highlights how the aspect ratio of the prisms affects phase behavior, showing that higher aspect ratios lead to biaxial phases while lower ratios relate to phases similar to hard cylinders.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!