Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Differential microphone arrays have the potential to be widely deployed in hands-free communication systems thanks to their frequency-invariant beampatterns, high directivity factors, and small apertures. Traditionally, they are designed and implemented in a multistage way with uniform linear geometries. This paper presents an approach to the design of differential microphone arrays with orthogonal polynomials, more specifically with Jacobi polynomials. It first shows how to express the beampatterns as a function of orthogonal polynomials. Then several differential beamformers are derived and their performance depends on the parameters of the Jacobi polynomials. Simulations show the great flexibility of the proposed method in terms of designing any order differential microphone arrays with different beampatterns and controlling white noise gain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/1.4927690 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!