Heart rate variability analysis using 24-h Holter monitoring is frequently performed to assess the cardiovascular status of a patient. The present retrospective study is based on the beat-to-beat interval variations or ΔRR, which offer a better view of the underlying structures governing the cardiodynamics than the common RR-intervals. By investigating data for three groups of adults (with normal sinus rhythm, congestive heart failure, and atrial fibrillation, respectively), we showed that the first-return maps built on ΔRR can be classified according to three structures: (i) a moderate central disk, (ii) a reduced central disk with well-defined segments, and (iii) a large triangular shape. These three very different structures can be distinguished by computing a Shannon entropy based on a symbolic dynamics and an asymmetry coefficient, here introduced to quantify the balance between accelerations and decelerations in the cardiac rhythm. The probability P111111 of successive heart beats without large beat-to-beat fluctuations allows to assess the regularity of the cardiodynamics. A characteristic time scale, corresponding to the partition inducing the largest Shannon entropy, was also introduced to quantify the ability of the heart to modulate its rhythm: it was significantly different for the three structures of first-return maps. A blind validation was performed to validate the technique.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4928334DOI Listing

Publication Analysis

Top Keywords

first-return maps
12
three structures
12
central disk
8
shannon entropy
8
introduced quantify
8
easy-to-use technique
4
technique characterize
4
characterize cardiodynamics
4
cardiodynamics first-return
4
maps Δrr-intervals
4

Similar Publications

We propose a robust algorithm for constructing first return maps of dynamical systems from time series without the need for embedding. A first return map is typically constructed using a convenient heuristic (maxima or zero-crossings of the time series, for example) or a computationally nuanced geometric approach (explicitly constructing a Poincaré section from a hyper-surface normal to the flow and then interpolating to determine intersections with trajectories). Our method is based on ordinal partitions of the time series, and the first return map is constructed from successive intersections with specific ordinal sequences.

View Article and Find Full Text PDF

Bistability and hidden attractors in the paradigmatic Rössler'76 system.

Chaos

December 2020

Rue de Frindeau, 69780 Saint Pierre de Chandieu, France.

In this paper, the dynamics of the paradigmatic Rössler system is investigated in a yet unexplored region of its three-dimensional parameter space. We prove a necessary condition in this space for which the Rössler system can be chaotic. By using standard numerical tools, like bifurcation diagrams, Poincaré sections, and first-return maps, we highlight both asymptotically stable limit cycles and chaotic attractors.

View Article and Find Full Text PDF

Covid-19 is a dangerous communicable virus which lets down the world economy. Severe respiratory syndrome SARS-COV-2 leads to Corona Virus Disease (COVID-19) and has the capability of transmission through human-to-human and surface-to-human transmission leads the world to catastrophic phase. Computational system based biological signal analysis helps medical officers in handling COVID-19 tasks like ECG monitoring at Intensive care, fatal ventricular fibrillation, etc.

View Article and Find Full Text PDF

Heart rate variability analysis using 24-h Holter monitoring is frequently performed to assess the cardiovascular status of a patient. The present retrospective study is based on the beat-to-beat interval variations or ΔRR, which offer a better view of the underlying structures governing the cardiodynamics than the common RR-intervals. By investigating data for three groups of adults (with normal sinus rhythm, congestive heart failure, and atrial fibrillation, respectively), we showed that the first-return maps built on ΔRR can be classified according to three structures: (i) a moderate central disk, (ii) a reduced central disk with well-defined segments, and (iii) a large triangular shape.

View Article and Find Full Text PDF

Noise, transient dynamics, and the generation of realistic interspike interval variation in square-wave burster neurons.

Phys Rev E Stat Nonlin Soft Matter Phys

October 2014

Instituto de Matemática e Estatística, Universidade de São Paulo, Brazil.

First return maps of interspike intervals for biological neurons that generate repetitive bursts of impulses can display stereotyped structures (neuronal signatures). Such structures have been linked to the possibility of multicoding and multifunctionality in neural networks that produce and control rhythmical motor patterns. In some cases, isolating the neurons from their synaptic network reveals irregular, complex signatures that have been regarded as evidence of intrinsic, chaotic behavior.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!