Catalysts were investigated with respect to catalytic activity and coke formation in combined steam and carbon dioxide reforming of methane to develop a highly active and stable catalyst for gas to liquid processes. Ni/La-X/Al2O3 (X = Co, Ce, Mo) catalysts were prepared by an impregnation method. The combined steam and carbon dioxide reforming of methane reaction were studied as a function of high pressure (20 bar) in a fixed bed reactor system. X-ray diffraction, BET surface area, and H2-temperature programmed reduction were used to observe the characteristics of the prepared catalysts. Coke formation of used catalysts was examined by scanning electron microscopy, transmission electron microscopy and the coke amount of used catalysts was measured by thermo gravimetric analysis. Catalysts with smaller particle size had a higher temperature of reduction, which had a positive effect on catalytic activity. The improvement in active site rise and dispersion and the lowest metal crystal size had an effect on catalyst activity. As a result, the Ni/La-Co/Al2O3 catalyst showed the highest activity at a reaction temperature of 800 degrees C and a reaction pressure of 20 bar.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1166/jnn.2015.8346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!