Screening for hepatocellular carcinoma and cholangiocarcinoma: Can biomarkers replace imaging?

Curr Hepatol Rep

Division of Gastroenterology and Hepatology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN, 55905.

Published: June 2015

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4551404PMC
http://dx.doi.org/10.1007/s11901-015-0261-yDOI Listing

Publication Analysis

Top Keywords

screening hepatocellular
4
hepatocellular carcinoma
4
carcinoma cholangiocarcinoma
4
cholangiocarcinoma biomarkers
4
biomarkers replace
4
replace imaging?
4
screening
1
carcinoma
1
cholangiocarcinoma
1
biomarkers
1

Similar Publications

Quantitative Analysis of Hepatitis D Virus Using gRNA-Sensitive Semiconducting Polymer Dots.

Anal Chem

January 2025

State Key Laboratory of Integrated Optoelectronics, College of Electronics Science and Engineering, Jilin University, No. 2699 Qianjin Street, Changchun, Jilin 130012, P. R. China.

Hepatitis D virus (HDV) significantly influences the progression of liver diseases. Through clinical observations and database analyses, it has been established that patients coinfected with HDV and hepatitis B virus (HBV) experience accelerated progression toward cirrhosis, hepatocellular carcinoma (HCC), and liver failure compared to those infected solely with HBV. A higher viral load correlates with increased replicative activity, enhanced infectivity, and more severe disease manifestations.

View Article and Find Full Text PDF

Development of a bacteria-nanosapper for the active delivery of ZIF-8 particles containing therapeutic genes for cancer immune therapy.

Acta Pharm Sin B

December 2024

School of Pharmacy, Institute of Hepatology and Metabolic Diseases, Department of Hepatology, the Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.

Specific tumor-targeted gene delivery remains an unsolved therapeutic issue due to aberrant vascularization in tumor microenvironment (TME). Some bacteria exhibit spontaneous chemotaxis toward the anaerobic and immune-suppressive TME, which makes them ideal natural vehicles for cancer gene therapy. Here, we conjugated ZIF-8 metal-organic frameworks encapsulating eukaryotic murine interleukin 2 () expression plasmid onto the surface of VNP20009, an attenuated strain with well-documented anti-cancer activity, and constructed a TME-targeted delivery system named /ZIF-8@.

View Article and Find Full Text PDF

Mechanical Analysis of Phellinus Linteus-Induced Apoptosis of Hepatoma Cells.

Microsc Res Tech

January 2025

International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun, China.

Liver cancer is prevalent with the third highest mortality rate globally. The biomechanical properties of cancer cells play a crucial role in their proliferation and differentiation. Studying the morphological and mechanical properties of individual living cells can be helpful for early diagnosis of cancers.

View Article and Find Full Text PDF

Background: Indocyanine green (ICG) fluorescence imaging technology is increasingly widely used in laparoscopic hepatectomy. However, previous studies have produced conflicting results regarding whether it is truly superior to traditional laparoscopic hepatectomy. This study investigated the clinical effect of laparoscopic hepatectomy for hepatocellular carcinoma (HCC) using ICG imaging technology.

View Article and Find Full Text PDF

Artificial intelligence (AI) and image processing are revolutionising the diagnosis and management of liver cancer. Recent advancements showcase AI's ability to analyse medical imaging data, like computed tomography scans and magnetic resonance imaging, accurately detecting and classifying liver cancer lesions for early intervention. Predictive models aid prognosis estimation and recurrence pattern identification, facilitating personalised treatment planning.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!