Resectability of hepatocellular carcinoma in patients with chronic liver disease is dramatically limited by the need to preserve sufficient remnant liver in order to avoid postoperative liver insufficiency. Preoperative treatments aimed at downsizing the tumor and promoting hypertrophy of the future remnant liver may improve resectability and reduce operative morbidity. Here we report the case of a patient with a large hepatocellular carcinoma arising from chronic liver disease. Preoperative treatment, including tumor downsizing with transarterial radioembolization and induction of future remnant liver hypertrophy with right portal vein embolization, resulted in a 53% reduction in tumor volume and compensatory hypertrophy in the contralateral liver. The patient subsequently underwent extended right hepatectomy with no postoperative signs of liver decompensation. Pathological examination demonstrated a margin-free resection and major tumor response. This new therapeutic sequence, combining efficient tumor targeting and subsequent portal vein embolization, could improve the feasibility and safety of major liver resection for hepatocellular carcinoma in patients with liver injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4548128PMC
http://dx.doi.org/10.3748/wjg.v21.i32.9666DOI Listing

Publication Analysis

Top Keywords

hepatocellular carcinoma
16
portal vein
12
vein embolization
12
remnant liver
12
liver
10
large hepatocellular
8
carcinoma patients
8
chronic liver
8
liver disease
8
future remnant
8

Similar Publications

Background: In patients with advanced hepatocellular carcinoma (HCC) following sorafenib failure, regorafenib has been used as an initial second-line drug. It is unclear the real efficacy and safety of sorafenib-regorafenib sequential therapy compared to placebo or other treatment (cabozantinib or nivolumab or placebo) in advanced HCC.

Methods: Four electronic databases (PubMed, Embase, Web of Science, and Ovid) were systematically searched for eligible articles from their inception to July, 2024.

View Article and Find Full Text PDF

Roles of Cellular Neighborhoods in Hepatocellular Carcinoma Pathogenesis.

Annu Rev Pathol

January 2025

Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA.

The development of hepatocellular carcinoma (HCC) involves an intricate interplay among various cell types within the liver. Unraveling the orchestration of these cells, particularly in the context of various etiologies, may hold the key to deciphering the underlying mechanisms of this complex disease. The advancement of single-cell and spatial technologies has revolutionized our ability to determine cellular neighborhoods and understand their crucial roles in disease pathogenesis.

View Article and Find Full Text PDF

Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes.

View Article and Find Full Text PDF

Galectin-1-Induced Tumor Associated Macrophages Repress Antitumor Immunity in Hepatocellular Carcinoma Through Recruitment of Tregs.

Adv Sci (Weinh)

January 2025

Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.

Tumor-associated macrophages (TAMs) are commonly considered accomplices in tumorigenesis and tumor development. However, the precise mechanism by which tumor cells prompt TAMs to aid in evading immune surveillance remains to be further investigated. Here, it is elucidated that tumor-secreted galectin-1 (Gal1) conferred immunosuppressive properties to TAMs.

View Article and Find Full Text PDF

AT7519, which inhibits multiple cyclin-dependent kinases, has been extensively investigated in various types of cancer cells. Previous studies have demonstrated the ability of this molecule to suppress the expression of the nuclear receptor retinoic acid-related orphan receptor gamma (RORγ) and several genes involved in hepatocellular carcinoma progression. In this study, we identified a distinct agonistic effect of AT7519 on RORγt, an isoform expressed by various immune cells, including T helper 17 lymphocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!