The prospect that protons from water may be transferred to N-heterocyclic molecules due to the presence of an excess electron is studied in hydrated azabenzene cluster anions using anion photoelectron spectroscopy and computational chemistry. In the case of s-triazine (C3H3N3), which has a positive adiabatic electron affinity, proton transfer is not energetically favored nor observed experimentally. Heterocyclic rings with only 1 or 2 nitrogen atoms have negative electron affinities, but the addition of solvating water molecules can yield stable negative ions. In the case of the diazines (C4H4N2: pyrazine, pyrimidine, and pyridazine) the addition of one water molecule is enough to stabilize the negative ion, with the majority of the excess electron density in a π* orbital of the heterocycle but not significantly extended over the hydrogen bonded water network. Pyridine (C5H5N), with the most negative electron affinity, requires three water molecules to stabilize its negative ion. Although our computations suggest proton transfer to be energetically viable in all five N-heterocyclic systems studied here when three or more water molecules are present, proton transfer is not observed experimentally in the triazine nor in the diazine series. In pyridine, however, proton transfer competes energetically with hydrogen bonding (solvation), when three water molecules are present, i.e., both motifs are observed. Pyridine clusters containing four or more water molecules almost exclusively exhibit proton transfer along with solvated [C(6-x)H(6-x+1)N(x)·OH](-) ions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp02746bDOI Listing

Publication Analysis

Top Keywords

proton transfer
20
water molecules
20
three water
12
hydrated azabenzene
8
azabenzene cluster
8
cluster anions
8
water
8
excess electron
8
electron affinity
8
transfer energetically
8

Similar Publications

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

Hydrated cable bacteria exhibit protonic conductivity over long distances.

Proc Natl Acad Sci U S A

January 2025

Electronics Sciences and Technology Division, United States Naval Research Laboratory, Washington, DC 20375.

This study presents the direct measurement of proton transport along filamentous , or cable bacteria. Cable bacteria are filamentous multicellular microorganisms that have garnered much interest due to their ability to serve as electrical conduits, transferring electrons over several millimeters. Our results indicate that cable bacteria can also function as protonic conduits because they contain proton wires that transport protons at distances >100 µm.

View Article and Find Full Text PDF

Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine.

Mol Pharm

January 2025

Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States.

Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites.

View Article and Find Full Text PDF

The electrochemical proton reactivity of transition metal complexes has received intensive attention in catalyst research. The proton-coupled electron transfer (PCET) process, influenced by the coordination geometry, determines the catalytic reaction mechanisms. Additionally, the p value of a proton source, as an external factor, plays a crucial role in regulating the proton transfer step.

View Article and Find Full Text PDF

Molecular Photoelectrocatalysis for Radical Reactions.

Acc Chem Res

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, and Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361005, P. R. China.

ConspectusMolecular photoelectrocatalysis, which combines the merits of photocatalysis and organic electrosynthesis, including their green attributes and capacity to offer novel reactivity and selectivity, represents an emerging field in organic chemistry that addresses the growing demands for environmental sustainability and synthetic efficiency. This synergistic approach permits access to a wider range of redox potentials, facilitates redox transformations under gentler electrode potentials, and decreases the use of external harsh redox reagents. Despite these potential advantages, this area did not receive significant attention until 2019, when we and others reported the first examples of modern molecular photoelectrocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!