The toxic effects of Ag nanoparticles (NPs) remain an issue of debate, where the respective contribution of the NPs themselves and of free Ag(+) ions present in the NP stock suspensions and after intracellular NP corrosion are not fully understood. Here, we employ a recently set up methodology based on high-content (HC) imaging combined with high-content gene expression studies to examine the interaction of three types of Ag NPs with identical core sizes, but coated with either mercaptoundecanoic acid (MUA), dodecylamine-modified poly(isobutylene-alt-maleic anhydride) (PMA), or poly(ethylene glycol) (PEG)-conjugated PMA with two types of cultured cells (primary human umbilical vein endothelial cells (HUVEC) and murine C17.2 neural progenitor cells). As a control, cells were also exposed to free Ag(+) ions at the same concentration as present in the respective Ag NP stock suspensions. The data reveal clear effects of the NP surface properties on cellular interactions. PEGylation of the NPs significantly reduces their cellular uptake efficiency, whereas MUA-NPs are more prone to agglomeration in complex tissue culture media. PEG-NPs display the lowest levels of toxicity, which is in line with their reduced cell uptake. MUA-NPs display the highest levels of toxicity, caused by autophagy, cell membrane damage, mitochondrial damage, and cytoskeletal deformations. At similar intracellular NP levels, PEG-NPs induce the highest levels of reactive oxygen species (ROS), but do not affect the cell cytoskeleton, in contrast to MUA- and PMA-NPs. Gene expression studies support the findings above, defining autophagy and cell membrane damage-related necrosis as main toxicity pathways. Additionally, immunotoxicity, DNA damage responses, and hypoxia-like toxicity were observed for PMA- and especially MUA-NPs. Together, these data reveal that Ag(+) ions do contribute to Ag NP-associated toxicity, particularly upon intracellular degradation. The different surface properties of the NPs however result in distinct toxicity profiles for the three NPs, indicating clear NP-associated effects.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.5b04661DOI Listing

Publication Analysis

Top Keywords

gene expression
12
ag+ ions
12
high-content imaging
8
cellular interactions
8
free ag+
8
stock suspensions
8
expression studies
8
data reveal
8
surface properties
8
levels toxicity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!