Enzyme-coupled assays for flip-flop of acyl-Coenzyme A in liposomes.

Biochim Biophys Acta

Division of Biochemistry, Department of Biology, University of Fribourg, Chemin du Musée 10, Fribourg, CH-1700, Switzerland. Electronic address:

Published: November 2015

Acyl-Coenzyme A is made in the cytosol. Certain enzymes using acyl-CoA seem to operate in the lumen of the ER but no corresponding flippases for acyl-CoA or an activated acyl have been described. In order to test the ability of purified candidate flippases to operate the transport of acyl-CoA through lipid bilayers in vitro we developed three enzyme-coupled assays using large unilamellar vesicles (LUVs) obtained by detergent removal. The first assay uses liposomes encapsulating a water-soluble acyl-CoA:glycerol-3-phosphate acyl transferase plus glycerol-3-phosphate (G3P). It measures formation of [(3)H]lyso-phosphatidic acid inside liposomes after [(3)H]palmitoyl-CoA has been added from outside. Two other tests use empty liposomes containing [(3)H]palmitoyl-CoA in the inner membrane leaflet, to which either soluble acyl-CoA:glycerol-3-phosphate acyl transferase plus glycerol-3-phosphate or alkaline phosphatase are added from outside. Here one can follow the appearance of [(3)H]lyso-phosphatidic acid or of dephosphorylated [(3)H]acyl-CoA, respectively, both being made outside the liposomes. Although the liposomes may retain small amounts of detergent, all these tests show that palmitoyl-CoA crosses the lipid bilayer only very slowly and that the lipid composition of liposomes barely affects the flip-flop rate. Thus, palmitoyl-CoA cannot cross the membrane spontaneously implying that in vivo some transport mechanism is required.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbamem.2015.08.020DOI Listing

Publication Analysis

Top Keywords

enzyme-coupled assays
8
acyl-coaglycerol-3-phosphate acyl
8
acyl transferase
8
transferase glycerol-3-phosphate
8
[3h]lyso-phosphatidic acid
8
liposomes [3h]palmitoyl-coa
8
liposomes
7
assays flip-flop
4
flip-flop acyl-coenzyme
4
acyl-coenzyme liposomes
4

Similar Publications

We report on the possibility of noninvasive diabetes monitoring through continuous analysis of sweat. The prediction of the blood glucose level in diabetic patients is possible on the basis of their sweat glucose content due to the positive correlation discovered. The ratio between the blood glucose and sweat glucose concentrations for a certain diabetic subject is stable within weeks, excluding requirements for frequent blood probing.

View Article and Find Full Text PDF
Article Synopsis
  • * Free fatty acids (FFAs) increase in response to the decline in phospholipids and exhibit an opposite trend in their levels, indicating a relationship between the two.
  • * The study suggests severe neuron damage due to KA treatment is linked to increased cell membrane permeability and abnormalities in the endomembrane system, which may contribute to FFA release.
View Article and Find Full Text PDF

Laccases play a crucial role in neutralizing environmental pollutants, including antibiotics and phenolic compounds, by converting them into less harmful substances via a unique oxidation process. This study introduces an environmentally sustainable remediation technique, utilizing NiO nanoparticles (NPs) synthesized through green chemistry to immobilize a metagenome-derived laccase, PersiLac1, enhancing its application in pollutant detoxification. Salvadora persica leaf extract was used for the synthesis of NiO nanoparticles, utilizing its phytochemical constituents as reducing and capping agents, followed by characterization through different analyses.

View Article and Find Full Text PDF

Amino acid L-arginine (Arg), usually presented in food products and biological liquids, can serve both as a useful indicator of food quality and an important biomarker in medicine. The biosensors based on Arg-selective enzymes are the most promising devices for Arg assay. In this research, three types of amperometric biosensors have been fabricated.

View Article and Find Full Text PDF

Ancestral l-amino acid oxidase: From substrate scope exploration to phenylalanine ammonia-lyase assay.

J Biotechnol

November 2023

Enzymology and Applied Biocatalysis Research Center, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, Arany János Street 11, Cluj-Napoca RO-400028, Romania. Electronic address:

In this study we assessed the applicability of the recently reported ancestral l-amino acid oxidase (AncLAAO), for the development of an enzyme-coupled phenylalanine ammonia-lyase (PAL) activity assay. Firstly, the expression and isolation of the AncLAAO-N1 was optimized, followed by activity tests of the obtained octameric N-terminal His-tagged enzyme towards various phenylalanine analogues to assess the compatibility of its substrate scope with that of the well-characterized PALs. AncLAAO-N1 showed high catalytic efficiency towards phenylalanines mono-, di-, or multiple-substituted in the meta- or para-positions, with ortho- substituted substrates being poorly transformed, these results highlighting the significant overlap between its substrate scope and those of PALs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!